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Abstract

Local adaptation is often studied via (i) multiple common garden experiments compar-

ing performance of genotypes in different environments and (ii) sequencing genotypes

from multiple locations and characterizing geographic patterns in allele frequency.

Both approaches aim to characterize the same pattern (local adaptation), yet the com-

plementary information from each has not yet been coherently integrated. Here, we

develop a genome-wide association model of genotype interactions with continuous

environmental gradients (G 9 E), that is reaction norms. We present an approach to

impute relative fitness, allowing us to coherently synthesize evidence from common

garden and genome–environment associations. Our approach identifies loci exhibiting

environmental clines where alleles are associated with higher fitness in home environ-

ments. Simulations show our approach can increase power to detect loci causing local

adaptation. In a case study on Arabidopsis thaliana, most identified SNPs exhibited

home allele advantage and fitness trade-offs along climate gradients, suggesting selec-

tive gradients can maintain allelic clines. SNPs exhibiting G 9 E associations with fit-

ness were enriched in genic regions, putative partial selective sweeps and associations

with an adaptive phenotype (flowering time plasticity). We discuss extensions for situ-

ations where only adaptive phenotypes other than fitness are available. Many types of

data may point towards the loci underlying G 9 E and local adaptation; coherent mod-

els of diverse data provide a principled basis for synthesis.
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1 | INTRODUCTION

Populations commonly exhibit phenotypic differences, often due to

local adaptation to environment (Hereford, 2009; Leimu & Fischer,

2008). Local adaptation is defined as a genotype-by-environment

interaction (G 9 E) for fitness that favours home genotypes

(Kawecki & Ebert, 2004). Local adaptation has long interested empir-

ical and theoretical biologists (Clausen, Keck, & Hiesey, 1940, 1948;

Levene, 1953; Slatkin, 1973). However, little is known about the

genomic basis of local adaptation, such as genetic architecture, major

molecular mechanisms and the extent to which genomic divergence

among populations is driven by local adaptation. Because local adap-

tation involves organismal responses to environmental gradients,

understanding the mechanisms of local adaptation has important

applications in agriculture and biodiversity conservation (Aitken &

Whitlock, 2013; Lasky et al., 2015; van Oppen, Oliver, Putnam, &

Gates, 2015). Additionally, G 9 E are important in human pheno-

types like disease (Anastasi, 1958; Gage, Davey Smith, Ware, Flint, &

Munaf!o, 2016; Hunter, 2005). Understanding the genomic basis of

G 9 E is an emerging area of biomedical research (Keller, 2014;
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Thomas, 2010) as are the genomics of local adaptation (reviewed by

Adrion, Hahn, & Cooper, 2015; Bragg, Supple, Andrew, & Borevitz,

2015; Des Marais, Hernandez, & Juenger, 2013; Hoban et al., 2016;

Manel & Holderegger, 2013; Tiffin & Ross-Ibarra, 2014).

A central question in local adaptation is whether selective gradi-

ents alone can maintain allelic clines at individual loci, or whether

stochastic processes, like limited dispersal, are required to explain cli-

nes at individual loci causing local adaptation (Anderson, Willis, &

Mitchell-Olds, 2011; Mitchell-Olds, Willis, & Goldstein, 2007). If

selective gradients cause rank changes in alleles with the highest rel-

ative fitness at an individual locus, selection may maintain a cline, a

pattern known as genetic trade-off or antagonistic pleiotropy ("Agren,

Oakley, McKay, Lovell, & Schemske, 2013). Detecting loci that exhi-

bit antagonistic pleiotropy in locally adapted systems has been chal-

lenging, partly due to limited statistical power of approaches that

conduct multiple tests of significance for opposing fitness effects in

different environments (Anderson, Lee, Rushworth, Colautti, &

Mitchell-Olds, 2013; Fournier-Level et al., 2011a).

Common garden experiments have long been employed to char-

acterize genetic variation in phenotypes (Langlet, 1971). In particular,

reciprocal common gardens at multiple positions along environmental

gradients are a powerful tool to reveal local adaptation (Clausen

et al., 1940, 1948). One approach to identifying the loci underlying

local adaptation is to combine fitness data from multiple common

garden experiments with genomic data ("Agren et al., 2013; Ander-

son, Lee, & Mitchell-Olds, 2011; Fournier-Level et al., 2011a; Lowry

& Willis, 2010). However, common gardens are logistically challeng-

ing and it is unclear how the typically small spatiotemporal scales of

common gardens relate to the scales of processes that generate local

adaptation in the wild (Weigel & Nordborg, 2015).

An alternative to discovering genetic and ecological mechanisms

of local adaptation is to study changes in allele frequency along envi-

ronmental gradients (Adrion et al., 2015; Bragg et al., 2015; Hedrick,

Ginevan, & Ewing, 1976; Hoban et al., 2016; Rellstab, Gugerli, Eckert,

Hancock, & Holderegger, 2015; Tiffin & Ross-Ibarra, 2014). In this

approach, known as a genome–environment association study, individ-

uals are sequenced from multiple locations along environmental gradi-

ents. Genetic markers and environmental gradients showing the

strongest correlations are then considered as potentially involved in

local adaptation (e.g., Coop, Witonsky, Di Rienzo, & Pritchard, 2010;

Eckert et al., 2010; Fitzpatrick & Keller, 2015; Hancock et al., 2008,

2011; Jones et al., 2012; Lasky et al., 2012a; Turner, Bourne, Von

Wettberg, Hu, & Nuzhdin, 2010). A challenge of both traditional asso-

ciation studies (genome–phenotype) and genome–environment associ-

ation studies is that the genomic variation is observational and is not

experimentally randomized (as opposed to linkage mapping with

experimental crosses, Devlin & Roeder, 1999; Hancock et al., 2008;

Kang et al., 2008; Nordborg & Weigel, 2008). As a result, many loci

may show spurious associations with phenotypes or with environment

(Bragg et al., 2015; Price, Zaitlen, Reich, & Patterson, 2010; Schoville

et al., 2012). Spurious associations are particularly problematic

for environmental gradients that are spatially autocorrelated due to

confounding with population structure (Schaffer & Johnson, 1974). A

technique for dealing with this confounding is to control for putative

population structure when testing associations (Coop et al., 2010) by

controlling for genome-wide relatedness (e.g., estimated by identity in

state) among accessions (Lasky et al., 2014; Yoder et al., 2014).

Understanding the genomic basis of adaptation may benefit from

synthesizing lines of evidence, for example by combining multiple

types of genome scans to strengthen the evidence that a locus is

under selection (Evans et al., 2014; Lasky et al., 2014). For example,

researchers have identified overlap between outliers for selection

statistics and markers associated with putatively adaptive pheno-

types (Horton et al., 2012) or between SNPs associated with pheno-

types and those associated with climate gradients (Berg & Coop,

2014). Lasky et al. (2015) used a Bayesian approach to combine

associations with phenotype and environment, first calculating cli-

mate associations and then using each marker’s association to deter-

mine the prior probability it was associated with G 9 E for adaptive

phenotypes, yielding a posterior. Although combining multiple lines

of evidence is potentially useful, the quantitative approaches in past

studies have often been ad hoc and lacked reasoned principles.

Here, we develop a modelling framework to conduct genome-wide

association scans for G 9 E while coherently synthesizing multiple

data types. Existing approaches to genome-wide association studies

(GWAS) with G 9 E (sometimes referred to as genome-wide interac-

tion studies, GWIS) have dealt with categorical nominal environ-

ments (Gauderman, Zhang, Morrison, & Lewinger, 2013; Korte et al.,

2012; Marigorta & Gibson, 2014; Murcray, Lewinger, & Gauderman,

2009; Thomas, 2010), benefiting from the statistical convenience of

modelling phenotypes in different environments as correlated traits

(Falconer, 1952). Association models have not been applied to

G 9 E along continuous environmental gradients, such as modelling

SNP associations with reaction norms (Jarqu#ın et al., 2014; Tiezzi, de

los Campos, Parker Gaddis, & Maltecca, 2017). Despite the existence

of studies where fitness was measured in multiple common gardens

for diverse genotyped accessions (Fournier-Level et al., 2011a), stud-

ies where linkage mapping was conducted for fitness at multiple

sites ("Agren et al., 2013), and studies where authors conducted asso-

ciation mapping for G 9 E effects on phenotypes (Li, Cheng, Spokas,

Palmer, & Borevitz, 2014), we found no example of association stud-

ies of G 9 E for fitness, which is the basis of local adaptation.

The underlying processes generating local adaptation are the

same regardless of the approach used for inference, be it genome–

environment association or common gardens. Thus, it is natural to

synthesize data from multiple approaches. Furthermore, by combin-

ing data types into a single inferential framework, we may increase

our power to find causal loci. Here, we simultaneously leverage data

from multiple common gardens and genome–environment associa-

tions using a new approach to imputing relative fitness when com-

mon gardens are missing (Figure 1). In the remainder, we describe

our approach, present test cases using simulations and published

data on Arabidopsis thaliana (hereafter Arabidopsis), and discuss

extensions.
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2 | METHODS

2.1 | Genome-wide association study of G 3 E
effects on fitness

In common garden experiments, environment is often treated as a fac-

tor. When more than two gardens are conducted, variation among them

may be considered in a more general fashion. For a given environmental

gradient, each common garden may be located along the gradient

according to its conditions. Describing common gardens as such may be

informative about the specific ecological mechanisms driving selective

gradients, taking advantage of the ordered nature of gardens’ environ-

ments. We leverage multiple common garden experiments to identify

markers (single nucleotide polymorphisms, SNPs) that show the stron-

gest G 9 E effects, loci where allelic state shows the strongest interac-

tion with environment in its association with fitness.

Local adaptation requires a genotype-by-environment interaction

for fitness at the whole-genome level. Variation in individual pheno-

types from multiple environments can be separated into components

determined by genotype, environment and G 9 E (Falconer, 1952;

Yates & Cochran, 1938). To assess this interaction at an individual

locus, one can assume that the relative fitness of individual i in a sin-

gle location, wi, satisfies the linear model

wi ¼ aþ bEEi þ bGGi;l þ bG#EGi;lEi þ ei (1)

where Gi,l is the genotype of individual i at locus l and Ei is the value of

a single environmental variable at the location where wi was mea-

sured. The bE parameter gives the effect of environment on fitness

and bG gives the effect of genotype on fitness. Our primary interest

lies in the bG9E parameter, which gives the strength and direction of

G 9 E effects; bG9E determines how responses to environmental gra-

dients are mediated by genotype. The term a gives the fitness inter-

cept. We assume that the vector of errors, e, can be expressed as

e ¼ Ev þ e

where E is a diagonal matrix of the environmental values, and

v$Nnð0; r2
G#EKÞ e$Nnð0; r2

e IÞ (2)

Here, v and e are independent. The n 9 n matrix K is calculated

as the genome-wide identity in state for each pair of the sampled n
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F IGURE 1 Illustration of our imputation
technique and stereotypical patterns
captured by our approach for neutral (top
panels) and selected (bottom panels) loci.
Here, we show hypothetical data from four
common gardens along an environmental
gradient (solid circles in four vertical
streaks in right panels, with small amount
of noise added to environmental values for
visualization) that have fitness scaled to a
maximum of 1. We also show accessions
(or ecotypes) collected in home
environments and sequenced (mapped in
two-dimensional geographic space in left
panels) having imputed relative fitness of 1
in their home environment (environment of
origin, open circles at top of right panels).
The selected locus (bottom right panel) in
question shows strong G 9 E for fitness,
such that allele B (blue) is more fit
(observed, solid circles) and more common
(imputed, open circles) at the right side of
the environmental gradient while allele b
(orange) is more fit and more common at
the left side of the gradient
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accessions (Kang et al., 2008). Random effects v are included

because a substantial portion of G 9 E may be associated with pop-

ulation structure (Lasky et al., 2015); naively applying standard F

tests to assess the interaction effects can result in a dramatic

increase in false-positive rates. To ameliorate this issue, the random

effect v represents the genetic background interactions with envi-

ronment (G 9 E, magnitude of their variance determined by r2
G#E),

while e represents the independent and identically distributed error

in the model (variance determined by r2
e ). However, incorporating

random effects may also decrease power when causal loci covary

with genomic background.

2.2 | Coherent synthesis of common gardens and
genome–environment associations via imputation

We now tackle the goal of synthesizing genome–environment asso-

ciations and G 9 E observed across common gardens. A challenge in

synthesizing these approaches is that genome–environment studies

are purely observational and lack common garden experiments.

However, an implicit assumption in studies of genome–environment

associations is that local adaptation occurs; if a common garden

were conducted at each location where wild genotypes are collected,

the home genotype would tend to be most fit. Our imputation

approach makes this assumption explicit. A formal consequence of

this assumption is an (imputed) observation of highest relative fitness

for genotypes at home. We combine this imputation with two

observed data sets: genomic markers and environment of origin (Fig-

ure 1). Next, we scale relative fitness within each common garden

so that the maximum observed fitness is given a relative fitness of

unity, yielding a metric that can be directly observed or imputed in

each type of study (common garden or genome–environment associ-

ation). For imputation, we then assume that each genotype collected

in the wild is locally adapted at its home and thus has a relative fit-

ness = 1 (Figure 1). After imputation, we can calculate marker asso-

ciations with G 9 E for fitness, where each fitness observation

arises from either (i) observations on a given genotype by common

garden combination or (ii) imputation on a given genotype collected

from its natural home and subsequently sequenced.

2.3 | Fitting models and comparing approaches

We compared four reaction norm approaches to genome-wide

G 9 E association studies in addition to the more common approach

of genome–environment associations. In Approach 1, we ignored

potential confounding of population structure, using least squares to

fit the model in Equation (1) where e is normal, independent and

identically distributed (excluding random effects v), but only including

observed fitness data from common gardens and excluding imputed

fitness data. In Approach 2, we again used least squares but included

imputed fitness data; these imputations using information from the

ancillary geographic data could possibly reduce false positives. In

Approach 3, we fit the full mixed-effects model (including random

effects v), but excluded imputed fitness. In Approach 4, we fit the

full mixed-effects model while including imputed fitness data. To test

a genome–environment association approach (Approach 5), we also

compared associations between SNPs and home environments used

a mixed-effects model in an approach akin to traditional association

mapping but where environment is substituted for phenotype (Lasky

et al., 2014; Yoder et al., 2014).

To improve computation time for the mixed-model approaches

(3–5), we used the method of Kang et al. (2010) and first fit the ran-

dom effects with covariance determined by kinship, and then fixed

these effects while testing the effects of each SNP on the pheno-

type. We included the environmental covariate effect in this initial

step, following the recommendation of Kang et al. (2010) for fitting

additional non-SNP covariates. In other words, we first fit the

model:

wi ¼ aþ bEEi þ ei (3)

Equation (3) is the same as Equation (1) but with genetic effects

omitted. We obtained parameter estimates â; b̂E; r̂
2
e ; r̂

2
G#E. We then

take the variance parameter estimates and use them to estimate the

remaining slope coefficients in Equation (1) using generalized least

squares. Because inclusion of the bE term in ordinary least squares

regression (Approaches 1–2) led to poor model fit, we excluded the

term from those approaches. We fit the discussed mixed model

using minimum norm quadratic unbiased estimation, MINQUE

(Brown, 1976; Rao, 1971; Reimherr & Nicolae, 2016). This approach

is equivalent to restricted maximum likelihood, REML, but rephrased

in a way that more fully exploits the linearity of the model, resulting

in a flexible framework that can be quickly computed.

2.4 | Simulation

We used simulations to demonstrate how our imputation technique

can improve power to identify loci causing G 9 E for fitness. To

assess scenarios with varying strength of local adaptation, we tested

simulations of varying dispersal distances. We used results of Fores-

ter, Jones, Joost, Landguth, and Lasky (2016b), who previously simu-

lated local adaptation along a continuous environmental gradient

(Landguth & Cushman, 2010). Specifically, we used genome and

environment data from Forester et al. (2016b) and here simulated

new common garden data. Forester et al. (2016b) simulated 100 bi-

allelic loci, one of which was under selection (more detail is found in

Forester et al., 2016b and the Supplement for this study). In the sim-

ulation, selection changed linearly along an environmental gradient,

with AA and aa genotypes favoured at different ends of the gradient

and Aa genotypes under uniform selection across the gradient

(Fig. S1). We tested three values of dispersal parameters (low to

high), resulting in varying strength of local adaptation, with the Pear-

son’s correlation between selected locus and selective gradient equal

to 0.28, 0.24 and 0.11, respectively.

Here, we sampled 250 individuals randomly. We then located

four common gardens at equal intervals along the gradient, encom-

passing the extremes of the selection surface (Fig. S1). For the mod-

erate dispersal and local adaptation scenario, we tested the effect of

4 | LASKY ET AL.



common gardens that sample only half the environmental gradient

(Fig. S1). For the gardens, we subsampled 100 individuals from the

full 250, and then averaged fitness for 25 clones of each individual

(each with the identical adaptive genotype of their parent clone) in

each common garden using the selection model of Forester et al.

(2016b). After imputing fitness for the 250 individuals in their home

environments, we had a total of 650 observations of fitness 9 loca-

tion (250 imputed observations from individuals sampled across the

landscape + 400 real observations arising from 100 clones in each of

four common gardens).

For both the simulations and the Arabidopsis case study, we

focus on the 1% of SNPs with the lowest p-values and their role in

local adaptation. In simulations with 100 SNPs, this was equivalent

to the lowest p-value SNP. To determine false-positive rates in simu-

lations, we calculated the proportion of simulations for a given sce-

nario where a neutral (as opposed to a causal) SNP had the lowest

p-value for bG9E.

2.5 | Model extensions

Two extensions to our approach could increase its generality. First,

one could treat unobserved fitness of a genotype in its home envi-

ronment as a free parameter. To constrain estimates of unobserved

fitness one could use informative priors, such that the prior probabil-

ity of relative fitness at home for each genotype would be monoton-

ically increasing, that is local adaptation is the most likely state, but

minor maladaptation is common. Inferences about unobserved fit-

ness could be further constrained using hierarchical models, such

that home fitness parameters for multiple genotypes arise from a

common distribution (Gelman & Hill, 2007). Relaxing the assumption

of perfect local adaptation would also generate less biased, if less

precise, parameter estimates for bG9E, which are currently conserva-

tive when imputation of local adaptation for maladapted genotypes

pushes bG9E towards zero and weakens estimates for selective gra-

dients.

Second, when fitness is not measured, components of fitness

(e.g., survival) or traits thought to be locally adaptive (e.g., physiologi-

cal) can be measured and used to infer the genomic basis of local

adaptation. For example, instead of modelling SNP 9 environment

associations with fitness, one could model SNP 9 environment asso-

ciations with components of fitness measured in common gardens

and estimate unobserved traits for sequenced genotypes using infor-

mative priors. To be clear, in our case study of Arabidopsis, we had

near but not complete lifetime fitness data (missing germination

stage). Here, we do not fit these model extensions to data, given the

current computational challenge of fitting many more parameters in

a Bayesian framework.

2.6 | Case study: Local adaptation to climate in
Arabidopsis thaliana

We applied these approaches to published data from studies of Ara-

bidopsis thaliana in its native Eurasian range. Fournier-Level et al.

(2011a) conducted replicated common gardens at four sites across

Europe: Spain, England, Germany and Finland (Figure 2). With these

data, Fournier-Level et al. (2011a) and Wilczek, Cooper, Korves, and

Schmitt (2014) showed evidence that genotypes are locally adapted

to their home temperature and moisture regimes and that alleles

associated with high fitness in a given garden tended to be found

nearer to that garden than alternate alleles, suggesting these loci

were involved in local adaptation. At each site, the authors trans-

planted 157 accessions (59 in the case of Finland) on a date in the

fall matched to germination of local winter-annual natural popula-

tions (Fournier-Level et al., 2011a). The authors calculated survival

(out of individuals surviving transplant) and average fecundity (where

individuals that died before reproducing had fecundity zero) giving

an estimate of absolute fitness (excluding the seed to seedling transi-

tion, Fournier-Level et al., 2011a).

These accessions were part of a panel of 1,307 accessions from

around the globe that were genotyped at ~250 k SNPs using a cus-

tom Affymetrix SNP tiling array (AtSNPtile1), with 214,051 SNPs

remaining after quality control (Figure 2, Horton et al., 2012). This

array was generated by resequencing 19 diverse ecotypes from

across the range of Arabidopsis (Kim et al., 2007). Of the 1,307

genotyped accessions, we used 1,001 accessions that were georefer-

enced and likely not contaminant lines (Anastasio et al., 2011), in

addition to being from the native range in Eurasia (Hoffmann, 2002;

Lasky et al., 2012b), and excluding potentially inaccurate high

Common gardens
Accessions in common gardens
All sequenced accessions

F IGURE 2 Data used in case study on
Arabidopsis. The location of common
gardens, natural accessions in common
gardens, and all other sequenced natural
accessions are shown
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altitude outliers (i.e., >2,000 m). After imputing fitness for accessions

in their home environments, we had a total of 1,531 observations of

fitness 9 location (1,001 imputed observations + 530 real observa-

tions arising from the four common gardens). We removed from

association tests SNPs having minor allele frequency (MAF) below

0.01, although we also considered a more conservative threshold of

MAF = 0.1.

We used climate and derived data from a previous study (Lasky

et al., 2012b) using published global climate data sets (Hijmans,

Cameron, Parra, Jones, & Jarvis, 2005; Zomer, Trabucco, Bossio, &

Verchot, 2008). Here, we focus on four climate variables that differ

among common gardens, are not strongly correlated and may be

involved in local adaptation: minimum temperature of the coldest

month, average monthly minimum temperature in the growing sea-

son, coefficient of variation of monthly growing season precipitation

and aridity index.

2.7 | Genome-wide G 3 E associations

We separately tested for each SNP’s interaction with each of the

four climate variables. For each of the four approaches using com-

mon garden data, we fit a model for each combination of SNP and

environmental variable. To characterize the types of patterns identi-

fied by our approach, we studied variation in the SNPs in the 0.01

lower tail of p-values for the hypothesis test that bG9E = 0 (the

coefficient for SNP 9 environment effects on fitness) for each cli-

mate gradient. For these SNPs, we calculated whether the direction

of allelic differentiation along environmental gradients was consis-

tent with the sign of bG9E. For example, if one allele was more com-

mon in accessions from warmer locations, we assessed whether that

same allele showed an increase in relative fitness in warmer common

gardens.

Next, we assessed whether our model predicted that different

alleles were most fit in the two common gardens at either extreme

of a climate gradient, that is whether the SNP was associated with

rank changes in fitness that are consistent with genetic trade-offs,

vs. a pattern where bG9E merely involved changes in fitness differ-

ence between alleles (such as conditional neutrality or variance

changing G 9 E), the latter of which cannot stably maintain local

adaptation. For example, if one allele was estimated to be most fit in

the coldest common garden, we determined whether a different

allele was estimated to be most fit in the warmest common garden.

Furthermore, we also quantified similarity (rank correlation in SNP

scores and proportion of SNPs common to the strongest 0.01 tail of

associations) between results from our G 9 E approach vs. those

from other recent studies of association with home climate in Ara-

bidopsis (Hancock et al., 2011; Lasky et al., 2012a, 2014).

2.8 | Enrichment of strong SNP 3 environment
associations across the genome

We studied whether loci we identified as likely being involved in

local adaptation exhibited supportive patterns in ancillary data sets.

First, to assess whether our association approach is capable of iden-

tifying the signal of local adaptation rather than spurious background

associations, we tested for enrichment of SNPs in genic (from tran-

scription start to stop sites) vs. intergenic regions. These tests are

based on the hypothesis that loci involved in adaptation are on

average more likely to be found near genes and linked to genic vari-

ation, in comparison with loci evolving neutrally (Hancock et al.,

2011; Lasky et al., 2012a). For a test statistic, we calculated the por-

tion of SNPs in the 0.01 lower p-value tail that were genic vs. inter-

genic.

Second, we hypothesized that locally adaptive alleles may have

been subject to partial (local) selective sweeps, especially given that

much of Arabidopsis’ Eurasian range was recently colonized follow-

ing the last glacial maximum. We tested for an enrichment of sig-

nificant (a = .05) pairwise haplotype sharing (PHS, Toomajian et al.,

2006) in the SNPs (using PHS calculated by Horton et al., 2012)

showing the greatest evidence of G 9 E for fitness. We also tested

evidence that these SNPs are enriched for significant (a = .05) inte-

grated extended haplotype homozygosity (standardized, iHS, Voight,

Kudaravalli, Wen, & Pritchard, 2006), an additional metric of partial

sweeps. We used ancestral SNP allele determinations from Horton

et al. (2012, based on alignment with the Arabidopsis lyrata gen-

ome) and the R package “rehh” to calculate iHS (Gautier & Vitalis,

2012).

Third, we also studied whether loci we identified were associated

with plasticity in flowering time, a trait that plays a major role in

local adaptation to climate in plants (Franks, Sim, & Weis, 2007; Hall

& Willis, 2006; Keller, Levsen, Olson, & Tiffin, 2012; Lowry et al.,

2014). Recently, Li et al. (2014) tested the flowering time response

of 417 natural accessions to simulated warming (up to ~4°C), and

then identified SNP associations with changes in flowering time

across treatments, G 9 E for flowering time. We tested whether

SNPs we identified as having SNP 9 environment interactions for

fitness (0.01 lower p-value tail) were enriched in nominally significant

associations (a = .05) with G 9 E for flowering time.

To generate a null expectation for each enrichment while main-

taining a signal of linkage disequilibrium in the null model, we circu-

larly permuted SNP categories (e.g., as genic vs. intergenic, having

significant iHS or not) along the genome and recalculated the test

statistics 10,000 times (Hancock et al., 2011; Lasky et al., 2012a).

3 | RESULTS

We compared four approaches to genome-wide G 9 E association

study and one approach for genotype–environment association.

Approach 1 used only observed (excluding imputed) fitness data, but

no correction for population structure. Approach 2 used observed

and imputed fitness data, and no correction for population structure.

Approach 3 fitted the full mixed-effects model, but only including

observed fitness data from common gardens, excluding imputed fit-

ness. Approach 4 fitted the full mixed-effects model while including

both observed and imputed fitness data. Approach 5 used a mixed

6 | LASKY ET AL.



model of genotype associations with environment (no common gar-

den data).

3.1 | Simulations

Across dispersal scenarios, we found that mixed models decreased

false-positive rates and increased accuracy of inference as to the

SNPs driving G 9 E for fitness (Figure 3). When dispersal was high-

est and local adaptation weakest, all approaches exhibited an

increase in false positives compared to the moderate dispersal sce-

nario. Among the approaches using common garden data

(Approaches 1–4), the mixed models (Approaches 3–4) generally had

low false-positive rates and thus high true-positive rates compared

to models excluding random effects (Approaches 1–2). Based on the

low false-positive rates and low p-values for causal SNPs in

Approach 3, common garden data were a clear source of statistical

power to identify causal SNPs (Figure 3). Including imputed data

(Approach 4) further reduced false-positive rates and resulted in no

false positives under the two lower dispersal scenarios. Genotype–

environment associations that did not use common garden data

(Approach 5) had similarly low false-positive rates (Table S5). How-

ever, common garden data combined with imputations (Approach 4)

yielded stronger inference for SNPs driving G 9 E; causal SNPs had

lower p-values (Figure 3, median causal SNP p for low, medium, high

dispersal scenarios: 3.2 9 10'6, 4.5 9 10'13, 7.4 9 10'7) compared

to ignoring common garden data (Approach 5, median causal SNP p

for low, med., high dispersal scenarios: 2.3 9 10'7, 1.9 9 10'10,

1.2 9 10'5). Under a scenario of medium dispersal and common gar-

dens that only covered half the gradient, false-positive rates were

elevated for approaches excluding random effects (Approaches 1–2)

or excluding imputations (Approach 3) but not when imputations and

random effects were included (Approach 4, Fig. S4).

3.2 | Case study on Arabidopsis

We found that simple linear model tests (Approaches 1–2) of

SNP 9 environment interactions were highly enriched in very low p-

values (Fig. S5) relative to the theoretical expectation. After incorpo-

rating the kinship 9 environment random effects (but excluding

imputed fitness observations, Approach 3), we found that SNP 9 en-

vironment associations with fitness were closer to the theoretical

expectation but still highly enriched in low p-values for three climate

variables. After incorporating imputed fitness observations into the

mixed model (Approach 4, right column, Fig. S5), we found p-value

distributions hewed closer to the theoretical expectation and were

slightly conservative (under-enriched in low p-values) for two climate

variables. These approaches tended to identify different SNPs as

having the strongest SNP 9 environment associations with fitness

(Table S6).

Based on the results of our simulations and the p-value distribu-

tions noted above, we focus the remainder of analyses on results

from mixed models with imputed fitness included (Approach 4). We

found that climate variables differed in the importance of kinship–

climate interaction associations with fitness (proportion of variance

in fitness explained by random effects v), suggesting that population

structure in Arabidopsis is more strongly correlated with some cli-

matic axes of local adaptation (G 9 E for fitness) compared to other

climate gradients. For growing season minimum temperatures, kin-

ship 9 environment interactions explained most of the variation in

fitness (R2 = .78, Table 1, row 3). By contrast, kinship 9 environ-

ment interactions for fitness were weaker along a gradient in winter

minimum temperature (R2 = .07).

Approach 4 tended to identify SNPs where SNP 9 environment

interactions favored alleles in climates where they were relatively

more common, that is, the sign of allelic differences in home climates

were matched by the sign of fitted mixed model SNP 9 environ-

ment associations with relative fitness (Table 1, row 1 and see out-

lier examples in Figure 4). In addition to characterizing

SNP 9 environment associations, we tended to identify SNPs where

we estimated a rank change in relative fitness for alternate alleles

along the environmental gradient between the two extreme common

gardens (where the fitted model expectation was that the allele with

higher fitness at one extreme common garden differed from the

allele with higher fitness at the other extreme, Table 1, row 2). It

appeared that the proportion of SNPs expected to show rank

changes in relative fitness among the common gardens was related

to how much of each climate variable’s range was covered by gar-

dens (Table 1, row 4). Thus, the common gardens may have been

limited in their ability to capture rank changing of alleles at some loci

involved in local adaptation to aridity and growing season cold.

We found nonrandom, but very weak overlap between the SNPs

we identified and those outliers in previous analyses (Hancock et al.,

2011; Lasky et al., 2012a, 2014). When considering mixed model

(Lasky et al., 2014) or partial Mantel (Hancock et al., 2011) SNP

associations with the same climate variables (genome–environment

associations with no common garden data), we found significant

overlap among the previously identified SNPs in the 0.01 lower tail

of p-values vs. those in the 0.01 tail identified here (permutation

test, all p < 0.05, Table S7). However, rank correlations among SNP

scores from previous approaches vs. our current approach were very

weak (all q < 0.2, Table S7, Fig. S6).

3.3 | SNP 3 environment associations with fitness
are enriched in regions suggestive of local adaptation

We found that SNP 9 environment interactions for fitness were sig-

nificantly enriched in genic regions (again focusing on Approach 4:

mixed model including imputations, Table 2; for reference, SNPs

identified via Approach 2, including imputation but without random

effects, were not significantly enriched in genic regions). Additionally,

we found that SNP 9 environment interactions for fitness were

enriched for high PHS and high integrated extended haplotype

homozygosity (iHS, Table 2). Finally, SNPs associated with G 9 E for

flowering time response to growing temperature (Li et al., 2014)

tended to also have strong SNP 9 growing season minimum temper-

ature interactions for fitness (p < 0.0002) but not for other climate

LASKY ET AL. | 7



−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps
FPR = 0.5

A1
 N

o 
im

pu
t.

Low dispersal

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0.2

A2
 W

/ i
m

pu
t.

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0.1

A3
 N

o 
im

pu
t.,

 m
ix

ed
 m

od
.

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0

A4
 W

/ i
m

pu
t.,

 m
ix

ed
 m

od
.

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0

A5
 G

en
e−

en
v.

, m
ix

ed
 m

od
.

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0.1

Medium dispersal

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0.4

High dispersal

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0.4

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0.2

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0.2

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

−log(p)

Pr
op

or
tio

n 
of

 S
N

Ps

FPR = 0.1

0 5 10 15 20 25

0.
0

0.
5

1.
0

>30

8 | LASKY ET AL.



variables (Table 2). Enrichments reported above did not change qual-

itatively (with respect to statistical significance) when we only con-

sidered SNPs with MAF > 0.1.

3.4 | SNP 3 environment associations with fitness
identify genes potentially involved in local adaptation

Our approach identified a number of strong candidates for local

adaptation at the top of lists of SNPs with the strongest SNP 9 en-

vironment associations with relative fitness (Tables S1–S4). For

example, the top SNP associated with aridity interaction effects on

fitness (chr. 4, position 11005059) fell within LESION SIMULATING

DISEASE 1 (LSD1), which affects a number of traits in Arabidopsis,

including survival and fecundity under drought (Wituszy#nska et al.,

2013; Szechy#nska-Hebda, Czarnocka, Hebda, & Karpi#nski, 2016, Fig-

ure 4), while the third SNP (chr. 2, position 7592008) fell within

ATMLO8, MILDEW RESISTANCE LOCUS O 8, homologous with

barley MLO which controls resistance to the fungal pathogen pow-

dery mildew (B€uschges et al., 1997). The top SNP associated with

winter cold interaction effects on fitness (chr. 5, position 7496047)

falls within coding region of WRKY38, involved in the salicylic acid

pathway and pathogen defence (Kim, Lai, Fan, & Chen, 2008), and

was the same locus identified as most strongly associated with mul-

tivariate climate in Lasky et al. (2012a, Figure 4). The top SNP asso-

ciated with variability in growing season precipitation interaction

effects on fitness (chr. 2, position 18504858) falls 380 bp from ABA

HYPERSENSITIVE GERMINATION 11, AHG11, which mediates the

effect of abscisic acid (ABA), a major hormone of abiotic stress

response, on germination (Murayama et al., 2012). The fifth highest

SNP (and second highest locus) associated with growing season cold

interaction effects on fitness (chr. 3, position 8454439) fell within

ABERRANT LATERAL ROOT FORMATION 5, ALF5, a gene that

confers resistance to toxins (Diener, Gaxiola, & Fink, 2001) belonging

to the MATE gene family, which play a variety of roles responding

to environment (Shoji, 2014).

4 | DISCUSSION

Genetic variation in environmental responses (G 9 E) is ubiquitous

but its genetic and physiological basis and role in local adaptation are

poorly understood. Replicated common garden experiments and gen-

ome scans for loci exhibiting evidence for local adaptation have been

important in understanding the genetic basis of G 9 E and local adap-

tation ("Agren et al., 2013; Eckert et al., 2010; Evans et al., 2014;

Fournier-Level et al., 2011a; Hancock et al., 2008; Lasky et al.,

2012a, 2015; Turner et al., 2010). However, the complementary

information in common gardens and geographic variation in allele fre-

quency have not been coherently synthesized. Previous association

studies of G 9 E have modelled discrete, categorical environmental

effects (Korte et al., 2012; Marigorta & Gibson, 2014; Murcray et al.,

2009; Thomas, 2010). The modelling of G 9 E across discrete, cate-

gorical environments is often employed for mathematical conve-

nience, as such a treatment allows the use of models designed for

multiple phenotypes, where the same phenotype in different environ-

ments is considered as multiple phenotypes (Falconer, 1952).

We demonstrated an approach to association study of G 9 E for

fitness and an imputation technique that allowed us to coherently

synthesize evidence from common gardens and genome–environ-

ment associations. Our imputation method relied on making explicit

the implicit assumption of local adaptation that underlies genome–

environment association studies (Coop et al., 2010; Hancock et al.,

TABLE 1 Characterization of patterns in Arabidopsis case study identified by Approach 4 (mixed model including imputations) for SNPs in
0.01 lower tail of p-values for SNP 9 environment interactions for fitness (first two rows of table) and for kinship 9 environment interactions
for fitness (third row). SNPs with home allele advantage are defined as those where the sign of allelic differences in home climates were
matched by the sign of fitted mixed model SNP 9 environment associations with relative fitness. Rank-changing SNPs are those where we
estimated a rank change in relative fitness for alternate alleles along the environmental gradient between the two extreme common gardens.
The final row gives the proportion of total observed climate gradient (among ecotypes) captured by the two most extreme common gardens

Statistic Aridity
CV growing season
precipitation

Minimum
temperature

Minimum temperature
growing season

Proportion SNP 9 environment with home allele advantage 0.46 0.89 0.92 >0.99

Proportion SNP 9 environment rank changing 0.31 0.92 >0.99 0.73

Kinship 9 environment R2 for fitness 0.08 0.58 0.07 0.43

Proportion climate gradient covered by gardens 0.13 0.65 0.78 0.31

F IGURE 3 Comparison of causal (red) and neutral (black) SNP associations with G 9 E for fitness across three different levels of dispersal
and 10 replicate simulations for each level. Approaches used (row 1) no imputation and no random effects (row 2), imputation but no random
effects (row 3), mixed models that used only observations from four common gardens (row 4), mixed models combining imputed observations
of relative fitness in home environments with common garden observations, or (row 5) a genotype–environment association approach. False-
positive rate (FPR) is indicated, calculated as the proportion of simulations where a neutral SNP had the lowest p-value. Each simulation had 1
causal SNP and 99 neutral SNPs; plots show aggregate distributions for all SNP by simulation combinations (i.e., total of 10 causal and 990
neutral SNPs). Y-axes show the proportion of SNPs in each category (causal or neutral) falling into a given p-value bin. For reference, dashed
line indicates a strict Bonferroni cut-off for a = .05, 'log(0.05/100) = 7.6
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2011; Lasky et al., 2012a). Using simulation, we demonstrated that

this imputation can increase power to identify SNPs causing G 9 E

for fitness and local adaptation. Our approach also identified strong

candidate genes in Arabidopsis associated with SNPs that exhibit fit-

ness trade-offs along climate gradients such that locally common

alleles had greater relative fitness.

The relative information on selective and adaptive genetic

mechanisms contained in the two data sets (common garden, geo-

graphic genomic) for a given system will be determined by several

factors. First, the power of common gardens depends on the range

of sampled covariates (genotype and environment). We found evi-

dence with both our simulations and empirical case study that

greater coverage of environmental gradients can increase power to

detect causal loci. Similarly, power may be enhanced by including

in common gardens a range of variation at locally adaptive loci

using diverse germplasm from across gradients. However, alternate

mechanisms of local adaptation across regions and confounding

between population structure and adaptive loci suggest that regio-

nal stratification in scans for local adaptation may be more power-

ful (Horton, Willems, Sasaki, Koornneef, & Nordborg, 2016).

Additionally, the power of common gardens is influenced by the

match between conditions in gardens and long-term natural selec-

tive gradients that give rise to local adaptation (Weigel & Nord-

borg, 2015), and the heritability of adaptive traits and fitness. The

information contained in genome–environment associations (and

hence imputed fitness data here), is influenced by the strength of

local adaptation in sampled populations (Figure 3), which itself is

determined by steepness of selective gradients, the level of gene

flow and time populations have had to evolve towards equilibrium

allele frequencies (Forester et al., 2016b; Lotterhos & Whitlock,

2014; Yeaman & Whitlock, 2011). It is important to recognize that

our simulations covered a limited range of the parameter space rel-

evant in nature (genetic architecture of local adaptation, dimension-

ality of environmental selective gradients, etc.). Here, populations

were given time to reach equilibrium (Forester et al., 2016b), which

likely enhanced the power of genotype–environment associations

compared to scenarios common in nature where populations are

still responding to environmental changes. Apart from information

on genetic mechanisms of G 9 E for fitness, common gardens

afford a more direct opportunity to study phenotypes under selec-

tion, as opposed to genotype–environment associations where

information on phenotype is limited to gene annotations.

Above we described a method of imputation based on the

assumption of local adaptation, that is home genotypes had greater

fitness than away genotypes. However, local adaptation in nature is

typically imperfect, such that the optimal genotype for a given loca-

tion might not be the home genotype (Hereford, 2009; Leimu & Fis-

cher, 2008). Local adaptation may not occur for several reasons,

such as gene flow across environmental gradients (Slatkin, 1973),

limited genetic variation (Barton, 2001), temporal environmental

shifts and other processes (Bridle & Vines, 2007). The utility of our

imputation is dependent on local adaptation occurring, just as in

genome–environment association studies, thus both approaches are

useful for identifying loci subject to selective gradients when local

adaptation occurs. Our imputation can be considered a heuristic to

be improved by further development.
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F IGURE 4 Example SNPs with the strongest associations (lowest
p-values) with cold winter temperatures (a) and aridity (b). Top
subpanels show the climate distribution of alleles in home genotypes
(natural geographic patterns), known as genotype–environment
associations. Bottom subpanels show relative fitness of alleles in
four common gardens, where common gardens’ climates determine
position on x-axes. Each SNP falls within the coding region of
indicated genes (WRKY38 and LSD1). Box widths are scaled to
relative number of accessions having each allele. In both (a) and (b),
the allele with the greatest relative fitness in common gardens
changes along the environmental gradient consistent with change in
allele frequency in native accessions (i.e., ecotypes)
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4.1 | Genotype 3 environment interactions in
genome-wide association studies

Recent advances in association models have included explicit mod-

elling of categorical G 9 E (Kooperberg, Dai, & Hsu, 2016; Korte

et al., 2012; Li et al., 2014; Marigorta & Gibson, 2014; Murcray

et al., 2009; Thomas, 2010; Windle, 2016), but to our knowledge

there are no published GWAS accounting for genotype interactions

with continuous environmental gradients (a reaction norm approach,

cf. Jarqu#ın et al., 2014; Tiezzi et al., 2017). By employing a reaction

norm approach to G 9 E (as we did here), models can be applied to

prediction at new sites, which is not possible using categorical, cor-

related trait approaches to G 9 E (Falconer, 1952; Korte et al.,

2012) where sites are treated as idiosyncratic. Some of the afore-

mentioned categorical treatments of SNP 9 environment interac-

tions were used in association studies for human disease. However,

many of the environmental variables that mediate genetic risk of dis-

ease are continuous in nature, such as exposure to ultraviolet radia-

tion and tobacco smoke. Future research on local adaptation and

human disease may benefit from exchange of approaches given the

shared importance across disciplines of understanding the genomic

basis of G 9 E.

4.2 | Case study on Arabidopsis thaliana

Our approach identified many SNPs where allelic variation was

associated with rank-changing relative fitness trade-offs along cli-

mate gradients (e.g., all 214 of the SNPs with strongest interaction

with winter minimum temperature association for fitness, i.e.,

0.001 quantile), loci where selective gradients may stably maintain

population differentiation ("Agren et al., 2013; Anderson, Willis,

et al., 2011). Studies of local adaptation genomics often find lim-

ited evidence for loci with such fitness trade-offs (antagonistic

pleiotropy). A previous study of the common garden data used

here (Fournier-Level et al., 2011a) found that the SNPs with the

strongest association with fitness in one common garden were

rarely among those with the strongest associations in another gar-

den, which the authors interpreted as evidence for conditional

neutrality. However, the fact that a locus is not among the

strongest associated with fitness at an individual site does not

indicate the locus is neutral at that site, it may simply be under

relatively weaker selection (see Fig. S7 for example illustration). By

contrast with previous approaches that model phenotypes at a sin-

gle site, our model was explicitly focused on detecting alleles with

the strongest evidence for SNP 9 climate interactions favouring

home alleles. Thus, our explicit model of G 9 E is more likely to

detect loci with patterns indicative of antagonistic pleiotropy com-

pared with approaches that model fitness in a single common gar-

den at a time, approaches that do not model G 9 E. Nevertheless,

apparent trade-offs at the level of individual QTL or SNPs may be

driven by complementary conditionally neutral mechanisms at

tightly linked loci.

Local adaptation may often involve complex traits governed by

many loci. Loci exhibiting antagonistic pleiotropy and loci exhibiting

G 9 E but no trade-offs (variance changing or conditionally neutral)

may both underlie genome-level local adaptation. Note that our

study, like that of Fournier-Level et al. (2011a) is based on associa-

tion mapping, which may suffer from identification of more false

positives compared with linkage mapping approaches ("Agren et al.,

2013; Anderson et al., 2013; Hall, Lowry, & Willis, 2010). Follow-up

experimental study of phenotypic effects of variation at individual

loci is required to confirm the results of association mapping (Broek-

gaarden et al., 2015; Verslues, Lasky, Juenger, Liu, & Kumar, 2014).

The SNPs that exhibited the strongest evidence for SNP 9 climate

interaction effects on fitness often fell within the coding regions of

strong candidate genes based on known roles in environmental

responses, suggesting our approach is a useful for identifying loci

underlying local adaptation.

We found evidence that SNP 9 climate interaction effects on

fitness were enriched in genic regions, suggesting that our model

captured a signal of local adaptation rather than population struc-

ture. We found that enrichments in genic SNPs only emerged after

using a mixed model to control for the putative effects of popula-

tion structure (genome-wide similarity), suggesting that the genic-

enriched patterns of divergence we modelled were not simply asso-

ciated with overall patterns of among-population divergence. This

enrichment is consistent with other findings in Arabidopsis (Han-

cock et al., 2011; Lasky et al., 2012a) and other species (Coop

TABLE 2 Permutation tests of enrichment p-values (Approach 4) for various signals suggestive of local adaptation to climate in case study
on Arabidopsis. For each statistic, we tested for enrichment of signal in the SNPs in the 0.01 lower tail of p-values for SNP 9 environment
associations with relative fitness. “Genic” tests enrichment of genic vs. nongenic SNPs, “PHS” and “iHS” test for enrichment with significant
(a = .05) pairwise haplotype sharing and standardized integrated extended haplotype homozygosity, respectively. The final row shows
enrichment with SNPs having significant (a = .05) associations with change in flowering time (G 9 E) in response to warming during growth

Statistic Aridity enrichment
CV growing season
precipitation enrichment

Minimum temperature
enrichment

Minimum temperature growing
season enrichment

Genic 0.0036 <0.0002 0.0054 0.0006

PHS 0.0272 0.0122 0.0068 0.0272

iHS 0.2840 0.0006 0.0020 0.0008

Flowering time
under warming, G 9 E

0.8582 0.0680 0.5844 <0.0002
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et al., 2009; Fumagalli et al., 2011; Lasky et al., 2015; but see

Pyh€aj€arvi, Hufford, Mezmouk, & Ross-Ibarra, 2013). We do not

interpret this enrichment as indicating that changes in amino acid

sequences are more important than regulatory evolution in local

adaptation, but rather as supporting the hypothesis that local adap-

tation is more likely to involve sequence evolution near genes as

opposed to locations farther from genes, where many intergenic

SNPs are found.

We found evidence that loci we identified as candidates were

enriched in evidence for partial selective sweeps (PHS and iHS

statistics), suggesting that recent sweeps in particular environments

are an important mode of local adaptation (Toomajian et al., 2006;

Voight et al., 2006). These local sweeps may be expected based on

the range dynamics of Arabidopsis, which has colonized much of its

Eurasian range following the retreat of glaciers (Sharbel, Haubold, &

Mitchell-Olds, 2000), a process that likely involved recent local adap-

tation. It is important to note that extended haplotype patterns sug-

gestive of partial sweeps may occur at the shoulders (away from

causal loci) of complete sweeps (Schrider, Mendes, Hahn, & Kern,

2015), thus caution is warranted in attributing our observed PHS

and iHS enrichment to localized sweeps vs. global sweeps at

nearby loci.

We found significant overlap between SNPs associated with

G 9 E for fitness along growing season cold gradients and SNPs

associated with G 9 E for flowering time across growing season

temperature treatments (Li et al., 2014). This concordance suggests

that variants causing flowering time plasticity drive changes in fit-

ness across temperature gradients. Thus, the evolution of tempera-

ture-responsive plasticity in flowering time may be a mechanism of

local adaptation to environments that differ in growing season tem-

peratures. For organisms inhabiting seasonal environments, timing of

the life cycle can have large impacts on fitness. Previous common

garden experiments have provided strong evidence that flowering

time is a central trait involved in local adaptation (Franks et al.,

2007; Hall & Willis, 2006; Keller et al., 2012; Lowry et al., 2014)

with molecular study further supporting the role of flowering time

(Caicedo, Stinchcombe, Olsen, Schmitt, & Purugganan, 2004; Lovell

et al., 2013; Shindo et al., 2005; Stinchcombe et al., 2004) and the

role of plasticity (Fraser, 2013; Lasky et al., 2014) in local adaptation

to climate.

Although there was overlap with signal identified by previous

approaches using the same data (Hancock et al., 2011; Lasky et al.,

2012a, 2014), overlap was generally weak, indicating our approach

identified distinct loci. This weak overlap is likely due to the differ-

ent statistical approaches used (partial Mantel, linear mixed models

and redundancy analysis) and the additional information contained

in fitness data. Furthermore, the common garden data contain sig-

natures of processes that differ to an unknown degree from pro-

cesses generating genome–environment associations. Here, the

common garden data represented one generation of fitness varia-

tion among sites, whereas spatial genomic patterns accumulated

due to multiple evolutionary mechanisms acting over thousands of

generations.

5 | CONCLUSIONS

Genome-wide association studies are a promising approach for iden-

tifying the genomic basis of local adaptation and G 9 E. Given that

many selective gradients driving local adaptation are continuous in

nature, reaction norm models of G 9 E across multiple common gar-

dens are a key tool for quantifying mechanisms of local adaptation.

Various approaches such as genome-wide expression profiling (Des

Marais et al., 2013), metabolomics (Meij#on et al., 2016) and ecophys-

iology (Keller et al., 2011) are useful for uncovering integrated mech-

anisms of local adaptation Future approaches that use a principled

basis for quantitative synthesis of patterns in multiple data types

(e.g., Levy Karin, Wicke, Pupko, & Mayrose, 2017) may enhance our

ability to characterize mechanisms of adaptation across levels of bio-

logical organization.
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