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Abstract

A fundamental goal in plant biology is to identify and understand the variation underlying plants’ adaptation to their
environment. Climate change has given new urgency to this goal, as society aims to accelerate adaptation of ecologically
important plant species, endangered plant species, and crops to hotter, less predictable climates. In the pre-genomic era,
identifying adaptive alleles was painstaking work, leveraging genetics, molecular biology, physiology, and ecology. Now, the
rise of genomics and new computational approaches may facilitate this research. Genotype—environment associations
(GEAs) use statistical associations between allele frequency and environment of origin to test the hypothesis that allelic
variation at a given gene is adapted to local environments. Researchers may scan the genome for GEAs to generate hypoth-
eses on adaptive genetic variants (environmental genome-wide association studies). Despite the rapid adoption of these
methods, many important questions remain about the interpretation of GEA findings, which arise from fundamental unan-
swered questions on the genetic architecture of adaptation and limitations inherent to association-based analyses. We
outline strategies to ground GEAs in the underlying hypotheses of genetic architecture and better test GEA-generated
hypotheses using genetics and ecophysiology. We provide recommendations for new users who seek to learn about the
molecular basis of adaptation. When combined with a rigorous hypothesis testing framework, GEAs may facilitate our un-
derstanding of the molecular basis of climate adaptation for plant improvement.

Local adaptation in the genomic era strategy is based on the hypothesis that these populations

each carry adaptations to their local climates. Local adapta-
tion is defined as a genotype-by-environment interaction for
fitness that favors home genotypes over foreign genotypes

A fundamental goal in plant biology is to characterize and
understand the variation underlying plants’ adaptation to
their environments. Climate change has given new urgency

to this goal, as society aims to adapt ecologically important
plant species, endangered plant species, and crop species to
new and less predictable climates. One key strategy for iden-
tifying genotypes and traits adapted to specific climates has
been to study variation among different populations of the
same species that inhabit different climates. This research

(Kawecki and Ebert, 2004). While demonstrating the
existence of local adaptation is conceptually straightforward
using multiple common garden experiments (Clausen et al,,
1940), dissecting its molecular basis is more challenging
Identifying existing loci that are locally adapted to climate
may reveal alleles and traits that could be used to discover

Received May 12, 2022. Accepted August 23, 2022. Advance access publication August 25, 2022

© American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com

220z 4oquisydag 0} uo Jasn (qi oussled) Asioniun 91elS uuad Aq v615.99/,929E0%/I199]d/E60 L 0 L/10p/aloIE-80UBADE/|[90]d/WO9"dNO"D1WSPED.//:SA)Y WO} PAPEOjUMOQ


https://orcid.org/0000-0001-7688-5296
https://orcid.org/0000-0002-3067-3359

2 I THE PLANT CELL 2022: Page 2 of 14

ecophysiological mechanisms of adaptation or that could be
deployed in breeding climate-adapted plants (Olatoye et al,
2018; Faye et al, 2019).

In the pre-genomic era, identifying adaptive alleles was
painstaking work, and required leveraging genetics, molecu-
lar biology, physiology, and ecology. Now, with the rise of
pangenome analyses, which we define as those that aim to
characterize almost all variation present in a given species,
almost all alleles (climate-adaptive and otherwise) in many
important species have been, or will soon be, sequenced,
and cataloged (Figure 1; Evans et al, 2014; Alonso-Blanco
et al, 2016; Zhao et al, 2018; Todesco et al, 2020; Hufford
et al, 2021; Tao et al, 2021). Even panels of a few hundred
randomly sampled genotypes will capture nearly all variants
that are perceptible in typical genome-wide association
studies (GWAS; Figure 2). It is hoped, but not certain, that
this abundance of genomic data and new quantitative geno-
mic approaches will facilitate the search for adaptive alleles.
Here we consider research strategies for leveraging geno-
type—environment associations (GEAs), which use statistical
associations between allele frequency and environmental
parameters at the location of origin to identify alleles
adapted to local environments, i.e. locally-adapted genetic
variants. When GEAs are implemented across the genome,
we will refer to them as environmental GWAS hereafter.

Lasky et al.

GEAs typically use only data on the environment of or-
igin of an organism, combined with sequence data, and
for this reason can be easily implemented. But despite
the ease of implementation, few studies have actually ex-
perimentally validated the inferences of GEAs. Fewer still
have shown successful applications of these inferences
for plant improvement for specific climates. Here, we re-
view the biological and statistical rationale of GEAs with
a specific aim of translating their correlation inferences
into molecular biological knowledge and improved plant
adaptation. We present strategies for using GEAs for
these purposes.

The promise of GEAs

In recent years, researchers have increasingly sought
to uncover the molecular basis of local adaptation. Some
of the major questions confronting researchers in this
field are:

(1) How do we find locally adapted alleles?

(2) How do we uncover the environmental and evolution-
ary mechanisms explaining functional natural variation?

(3) What is the genetic architecture of local adaptation,
and what factors determine this architecture?

(4) What molecular mechanisms underpin local adaptation?

Species Number of Georeference References
accessions data available
resequenced for GEA?
Arabidopsis 1,135 1,057 Alonso-Blanco et al.
(Arabidopsis thaliana) 2016
Rice (Oryza sativa) 3,188 1,443 Wang et al. 2018,
Gutaker et al. 2020
Switchgrass 732 700 Lovell et al. 2021
(Panicum virgatum)
Sorghum (Sorghum bicolor) 384 143 Bellis et al. 2020,
LeBauer et al. 2020
Black cottonwood 544 544 Evans et al. 2014
(Populus trichocarpa)
3 sunflower species 1,293; 309; 984; 309; Todesco et al. 2020
(Helianthus annuus, 432 432

H. argophyllus, H. petiolaris)

Figure 1 A summary of representative pan-genome studies, which have comprehensively characterized genome-wide polymorphisms for global
germplasm panels (Evans et al, 2014; Alonso-Blanco et al, 2016; Wang et al., 2018; Bellis et al., 2020; Gutaker et al.,, 2020; LeBauer et al., 2020;

Todesco et al., 2020; Lovell et al,, 2021). Photo credits Arabidopsis, rice, switchgrass, sorghum (author G.P.M.), cottonwood, sunflower.
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Figure 2 Most climate adaptive alleles have been sequenced in some
important plant species. Assuming random sampling of genotypes,
this panel shows the probability of including an allele of a given minor
allele frequency (MAF) in a collection of N genotypes. GWAS
approaches (including environmental GWAS) typically have low
power for rare alleles, and so most alleles visible to GWAS are cap-
tured by panels of even a few hundred genotypes (assuming random
sampling).

GEAs arrived in this context, enabled by the sequencing
advances of the last decades (Hancock et al, 2008; Coop
et al, 2010; Eckert et al, 2010; Manel et al, 2010; Sork
et al, 2010; Lasky et al, 2012). GEAs are simply correla-
tions between the environment of origin, e.g. climate and
allele frequency. Other methods have been developed to
detect potentially adaptive alleles by looking for excess dif-
ferentiation among populations (fixation index [Fs;] and
variants; Lewontin and Krakauer, 1973; Luu et al., 2017) or
signatures of selective sweeps (Maynard Smith and Haigh,
1974; Pavlidis et al,, 2013). However, GEAs are particularly
useful because they cannot only identify adaptive alleles
but also determine which environmental gradients drive
changes in selection (Lasky et al, 2012; Capblancq and
Forester, 2021). Given that the molecular mechanisms of
adaptation that underlie complex traits and complex eco-
logical variation are often unclear, implementing GEAs
across the genome (i.e. environmental GWAS) may allow
gene discovery without strong a priori knowledge of mo-
lecular physiological responses to specific environments.
Once identified, genes with strong changes in allele fre-
quency across environments can be further interrogated
using expression responses to relevant environmental
treatments (Lasky et al, 2014; Gates et al,, 2019), popula-
tion genetic patterns indicative of selection (Evans et al,
2014; Yoder et al, 2014; Price et al.,, 2018), and changes in
whole plant performance across environments (Gienapp
et al, 2017; Lasky et al., 2018; Gates et al,, 2019). These po-
tentially locally adapted alleles could then be used in
marker-assisted breeding or genetic engineering of plant
populations of interest.
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This promise has led to a rapid adoption of these studies.
However, the often implicit evolutionary and ecological ge-
netic hypotheses that underpin the use of GEA remain
under-appreciated. As a result, GEA may not currently be
deployed optimally by researchers. Here our goal is to review
these underlying hypotheses, and suggest high-level strate-
gies for using GEA in research.

Evolutionary biology hypotheses that
underpin the use of GEA

Below we discuss the evolutionary hypotheses that, when
true, suggest the best-case scenario for detecting GEA for a
gene that contributes to local adaptation (Figure 3). Local
adaptation may occur in ways contrary to some of these hy-
potheses; in these situations, GEA will have less power to
detect genomic regions underlying adaptation. Carefully
considering these hypotheses, and whether they apply to
the species of interest, can help researchers decide when
and how to apply GEA.

Populations are locally adapted via consistent
phenotypic clines along environmental gradients

To study the basis of environmental adaptation, one must
first include individuals inhabiting a range of environments
(Figure 3). Next, for locally-adapted genes to be discovered
via environmental GWAS, and for a variant of interest to
show a truly locally-adapted GEA, an (often implicit) hy-
pothesis is that populations are locally adapted to their
environment (Figure 3; Lasky et al, 2018). Adaptation
requires genetic variation for fitness and conditions that
allow effective selection. For example, population genetic
theory indicates that the strength of spatially changing se-
lection must be strong enough to counteract the homoge-
nizing effects of gene flow among environments (Slatkin,
1973). Moreover, species with small effective population
sizes or that have experienced bottlenecks might be less
likely to evolve local adaptation (Siol et al., 2010; Angert
et al, 2020). Meta-analyses have revealed that local adap-
tation is common, but importantly, local adaptation does
not always occur, even when there are environmental gra-
dients that select for different phenotypes (Leimu and
Fischer, 2008; Hereford, 2009).

An additional hypothesis that is required for GEA is
that populations must be locally adapted along a gradient
captured by the tested environmental variables. For GEA
to fully live up to its promise, environmental variables
representing distinct axes of selection should be orthogo-
nal to each other so that it is possible to determine which
aspect of the environment is driving changes in selection
(Figure 3). When multiple environmental variables are
correlated, the best GEA can do is to identify suites of
collinear  variables associated with the genotype
(Manel et al, 2010; Sork et al, 2010; Lasky et al, 2012;
Eckert et al, 2015). Additionally, populations may not be
locally adapted along every environmental gradient that
researchers hypothesize, and so GEA along some
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Figure 3 Evolutionary ecological and genetic hypotheses underpinning the use of GEA and environmental GWAS. The ideal scenario for using
GEA, and especially environmental GWAS, is when a range of favored evolutionary hypotheses are true. When the favored hypotheses are not
true, GEA and especially environmental GWAS will likely perform less well. The bottom three rows are major considerations for phenotypic
GWAS as well, where the same hypotheses are favored (oligogenic; not confounded with population structure; genetic homogeneity). Hypotheses
under which GEA approaches are more effective are noted as “favored,” while hypotheses under which GEA approaches are less effective are
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noted as “unfavored.” Acknowledging multiple hypotheses can mitigate bias toward favored hypotheses (Platt, 1964).

environmental gradients may be specious. This latter
problem can be considered a pitfall of “pan-environmen-
tal adaptationism,” i.e. assuming that because a plausible

gradient.

ecophysiological tradeoff can be hypothesized, popula-
tions must be adapted along a related environmental

220z 4oquisydag 0} uo Jasn (qi oussled) Asioniun 91elS uuad Aq v615.99/,929E0%/I199]d/E60 L 0 L/10p/aloIE-80UBADE/|[90]d/WO9"dNO"D1WSPED.//:SA)Y WO} PAPEOjUMOQ



Genotype-environment associations

Another important hypothesis is that different lineages
will adapt to environmental gradients using the same
traits. Researchers employing GEA often use diverse panels
from multiple regions, where the same environmental gra-
dients may be repeated (Hancock et al., 2011; Lasky et al,
2015; van Boheemen and Hodgins, 2020). GEA will work
optimally when local adaptation in different regions occurs
via consistent phenotypic changes along tested environ-
mental gradients. This hypothesis is prior to even hypothe-
ses about the consistency of genetic mechanisms (see
genetic architecture section “Detection of allele frequency
clines along environmental gradients depends on genetic
architecture” below). Freezing tolerance may be an exam-
ple where populations in different regions evolve similar
physiological strategies to deal with the same conditions
(Monroe et al,, 2016). By contrast, plants may adapt along
apparently similar gradients in different regions via distinct
ecological strategies/phenotypic clines, because true selec-
tive gradients are not consistent between regions, or be-
cause of historical contingencies. For example in
Arabidopsis (Arabidopsis thaliana), despite consistent ele-
vation gradients in climate across regions, higher elevation
populations in the Mediterranean are late flowering, while
they are early flowering in Asia, which would confound
global GEAs (Gamba et al, 2022). Different lineages may
evolve different solutions to the same problem because
locally-adaptive tradeoffs can be counterintuitive; for in-
stance, in the case where stress-tolerating traits might be
hypothesized to evolve in “stressful” environments, but
the actual locally adapted populations have stress escape
traits such as early flowering (Ludlow, 1989; Franks, 2011;
Vigouroux et al,, 2011).

Detection of allele frequency clines along
environmental gradients depends on genetic
architecture

The home genotype advantage of local adaptation occurs
at the organismal level, but the specific genetic variants
that cause this home advantage can have a wide range of
number, effect sizes, interactions with the environment,
dominance, and epistasis patterns, i.e. genetic architectures.
Genetic architecture is an important consideration for the
use and deployment of locally adapted genetic variants, as
GEA has more power under some genetic architectures than
others.

One major axis of this architecture is the number of var-
iants and their effect size distribution, often characterized
in the extreme as polygenic (many small-effect variants) or
oligogenic (few large-effect variants, Figure 3). Large-effect
variants are more likely to show differences in allele fre-
quency between locally-adapted populations than small-
effect loci (Le Corre and Kremer, 2012), making GEAs
harder to detect or nonexistent for small-effect loci.
Adaptive loci also might show dominance and epistasis
(Monnahan and Kelly, 2015) making them harder to find
in association studies because most studies start with
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single locus additive models, and a much larger parameter
space must be tested to identify dominance (in outcross-
ing systems) and epistasis.

While local adaptation is due to individual-level tradeoffs
in fitness between environments, the individual loci contrib-
uting to adaptation do not necessarily themselves show
tradeoffs in fitness. That is, conditionally neutral loci show
fitness differences in some environments but not others,
while antagonistically pleiotropic loci show fitness tradeoffs
between alternate alleles (Anderson et al, 2011). Only the
latter example may be stably maintained as spatial clines in
the face of gene flow, but many systems may be far from
equilibrium in spatial allele frequency patterns, so condition-
ally neutral alleles could still be important contributors to
local adaptation (Wadgymar et al, 2017). GEAs are more
powerful when the antagonistic pleiotropy hypothesis is
true, and have reduced power under conditional neutrality
(Yoder and Tiffin, 2018).

GEAs also depend on a hypothesis of genetic homogene-
ity, i.e. that different populations inhabiting the same type
of environment adapt via the same genetic mechanisms
(Figure 3). When multiple loci influence a trait under
spatially-varying selection, different genes may be more likely
to underlie local adaptation in different isolated populations
(i.e. genetic heterogeneity). Even when the same genes are
involved in local adaptation in different populations, differ-
ent mutations, i.e. different alleles, may underlie local adap-
tation (i.e. allelic heterogeneity). Both phenomena result in
individual causal alleles being rare, reducing the power of
environmental GWAS. Theoretical results show that limited
gene flow between populations inhabiting the same environ-
ments will increase the likelihood of genetic or allelic hetero-
geneity by reducing the chance that a new locally-adaptive
variant can spread and be used in adaptation by different
populations in the same environment (Lee and Coop, 2019).
By contrast, shared ancestral variation or higher gene flow
between these populations increases the chance that the
same genetic mechanism underlies local adaptation (Lee
and Coop, 2019). In general, gene flow and demography are
known in theory to play important roles in determining ge-
netic architecture, but their influence on local adaptation is
often poorly known in most empirical systems; the extent of
heterogeneity may also differ between different traits in the
same system (Lopez-Arboleda et al, 2021).

Recent progress with GEAs

Here we provide a brief overview of the last decade of re-
search that has employed GEAs. We divide these examples
into three major strategic categories: reverse ecological
genetics, forward genetics (i.e. environmental GWAS), and
genomic prediction of genotype—environment interactions
(G X E). An ever-growing number of studies are being
published in these categories, although forward genetics
environmental GWAS have been least often followed with
experimental validation. We include some prominent exam-
ples outside of plant systems, even though ecologically-
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relevant experiments are often logistically prohibitive in
many nonplant systems.

Forward ecological genetics using environmental
GWAS

There are many examples of researchers employing environ-
mental GWAS (genome scans for GEAs) over the last de-
cade. While there are too many to thoroughly review here,
these studies often find environmental associations in genes
with functions plausibly involved in local adaptation (for ex-
ample (Lasky et al, 2012; Evans et al, 2014; Yoder et al,
2014; Gibson and Moyle, 2020). However, with abundant
annotations of many genes, and many traits being involved
in local adaptation, functional annotations of environmental
GWAS hits are not strong evidence for a role in adaptation
(Pavlidis et al, 2012).

An emerging approach is to test whether environmental
GWAS identifies the same variants as GWAS on putatively
adaptive traits, supporting the hypothesis that the variants
responsible for trait variation underlie local adaptation along
the tested environmental gradient (Evans et al, 2014
Yeaman et al,, 2016; Lovell et al, 2021). In Arabidopsis, Lasky
et al. (2018) constructed a model that combined changes in
performance along climate gradients with GEA patterns to
identify genes locally adapted to climate, and found that pu-
tative temperature-adapted single nucleotide polymor-
phisms (SNPs) were also associated with flowering time
variation, suggesting local adaptation via evolution of flower-
ing time. Relatedly, Gates et al. (Gates et al, 2019) showed
in maize (Zea mays L.) that top environmental GWAS SNPs
were also associated with G x E for fitness across common
gardens in Mexico, and with genetic variation in flowering
time. Also in Arabidopsis, Exposito-Alonso and colleagues
observed that SNPs associated with greater fitness in a dry
common garden tended to originate from drier climates
(Exposito-Alonso et al., 2019).

A separate use of GEA has been to test hypotheses about
the genetic architecture of local adaptation. For example,
several studies have used the number and effect size of envi-
ronmental GWAS hits to test whether local adaptation is
oligogenic or polygenic (Bay and Palumbi, 2014; De La Torre
et al, 2019). However, a challenge with using any association
studies to explore genetic architecture is the unknown role
of long-range linkage disequilibrium arising from population
structure, which can obscure large-effect variants and create
a false signal of polygenic adaptation (Brachi et al, 2011).
Additionally, there are ascertainment biases and statistical
artifacts like the Beavis effect and winner's curse, where
quantitative trait loci (QTL) identified as being significant
have an upward bias in effect size estimation, particularly in
smaller samples (Beavis, 1994; Palmer and Pe’er, 2017). These
biases could cause the genetic architecture that is detectable
by an environmental GWAS to not match the true genetic
architecture of adaptation.

Overall, the environmental GWAS approach is being
adopted in a wide range of systems to study local
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adaptation. However, it is notable that these studies rarely
identify cloned candidate genes with known natural variants
and functions related to the tested environmental variable
(see example genes in “Reverse ecological genetics using
GEA” section). Furthermore, there has been no systematic
attempt to validate environmental GWAS hits using near-
isogenic lines (NILs) or genetically engineered variants. As a
more limited (but promising) example, Ferrero-Serrano and
co-authors first detected temperature-associated exonic
SNPs in Arabidopsis and then identified those predicted to
affect mRNA secondary structure, and showed in vitro that
two top SNPs did cause changes in the mRNA structure in
response to temperature (Ferrero-Serrano et al,, 2022).

Reverse ecological genetics using GEA

In general, fewer reverse ecological genetics GEAs have been
performed than there have been forward genetics (environ-
mental GWAS) studies. However, there is a long history of
reverse ecological genetics in the pre-genomic era. For exam-
ple, in one of the earliest studies, Oakeshott et al. (1982)
studied allozymes of alcohol dehydrogenase (ADH) in
Drosophila (Drosophila melanogaster) and detected repli-
cated latitudinal clines on several continents. However, these
authors could not compare their results to the genomic
background to determine whether these allozymes were dis-
tinct in their correlation with latitude, which would suggest
a role in local adaptation, or whether the whole genome
showed latitudinal changes in ancestry, which would suggest
that the history of human introductions of this species gen-
erates parallel ancestries across continents. Recent studies
have used GEAs for markers in sets of candidate genes, such
as plant phenology genes (Fitzpatrick and Keller, 2015;
Pluess et al, 2016; Fournier-Level et al,, 2022) but some have
not compared patterns at candidate genes to genomic back-
ground patterns. A lack of comparison with genome-wide
patterns may be responsible for the decline in these
“candidate gene” or reverse ecological genetics approaches
in recent years, in favor of forward genetics approaches like
genome-wide mapping studies (e.g. environmental GWAS),
that are often referred to as “unbiased,” but which actually
have substantial biases with respect to genetic architecture
(similar to those for GWAS, see “favored hypotheses” in
Figure 3 and below).

Nevertheless, there are a growing number of studies where
researchers have applied GEA to individual genes where nat-
ural variants have demonstrated phenotypes (i.e. with more
support than simply being unverified phenotypic GWAS
hits, which are often spurious) with strong ecological hy-
potheses for the consequences of natural variation. Below
are a few examples of such genes: a seed tannin accumula-
tion gene (Tanninl) associated with precipitation and a
photoperiod sensitivity (Maturity1) gene associated with lati-
tude in sorghum (Sorghum bicolor; Lasky et al, 2015); C-
REPEAT/DRE BINDING FACTOR (CBF) transcription factor
genes involved in cold acclimation associated with tempera-
ture in Arabidopsis (Monroe et al, 2016); a gene (LOW
GERMINATION STIMULANT 1 [LGS1]) controlling root
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exudate strigolactones associated with parasitic plant preva-
lence in sorghum (Bellis et al., 2020), a sodium transporter
(HIGH-AFFINITY K+ TRANSPORTER 1 [HKT1;1]) gene con-
trolling salt tolerance in Arabidopsis associated with distance
from the coast (Baxter et al, 2010); a MYB-domain tran-
scription factor gene controlling UV-absorbing flavonol gly-
cosides in sunflower (Helianthus annuus) associated with
temperature and moisture (Todesco et al, 2022); and an
ethylene response transcription factor gene involved in oxy-
gen sensing in Arabidopsis associated with aridity (Lou et al,,
2022). In most cases, the authors showed evidence that
these specific genes contributed to local adaptation by com-
parison to the genomic background correlation with the en-
vironment. However, would these genes be found by
forward ecological genetics using environmental GWAS and
survive a control for multiple testing? In the case of the sor-
ghum genes (Lasky et al, 2015; Bellis et al., 2020), these loci
were not detected as environmental GWAS peaks, indicating
uncertainty in the power of such genome scans. Future re-
verse ecological genetics studies could help our understand-
ing of the power of environmental GWAS if these studies
also tested whether such GWAS would identify their locally-
adapted candidate gene.

Genomic prediction of genotype—environment
interactions

If GEAs really do identify genes involved in local adaptation,
then by the definition of local adaptation, alleles at these
genes should predict changes in fitness (or components of
fitness) in response to environmental changes. The genetic
prediction of whole organism phenotypes is a major field of
research, either based on sets of GWAS loci or whole-
genome similarity (Gienapp et al, 2017, McGaugh et al,
2021).

Genomic predictions of population fitness based on GEAs
have become popular in conservation genetics. For example,
Bay et al. (2018) showed how climate-associated SNPs that
were mismatched with future climates were correlated with
current population declines. However, Laruson et al. (2022)
recently showed that these patterns of mismatch might
arise when stronger neutral drift in small populations gener-
ates spurious GEAs. Even if GEAs are not effective at identi-
fying individual causal loci, multi-locus GEAs may still reflect
local adaptation when many small-effect loci contribute.
Gienapp et al. (2017) showed in Arabidopsis how whole-
genome associations with winter cold predicted change in
the most fit accessions across multiple common gardens,
Fitzpatrick et al. (2021) and Laruson et al. (2022) showed
that GEAs with randomly chosen SNPs or whole-genome
variation, respectively, performed just as well as GEAs with
causal SNPs for predicting population response to environ-
mental change. Overall these methods show the promise of
combining environmental GWAS results with prediction.

Most genomic prediction studies have focused on predict-
ing traits in a single environment, and fewer have focused
on predicting GxE (but see e.g. Technow et al, 2015; Tiezzi
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et al, 2017; Messina et al, 2018). GEA-based genomic predic-
tion might be a useful complement to traditional
phenotype-based predictions of plant performance across
environments. Lasky et al. (2015) showed how dozens or
hundreds of SNPs with the strongest GEAs could predict
the response to experimental drought and aluminum toxic-
ity in sorghum, and Gates et al. (2019) showed in maize
that such SNPs can predict response to drought.

A future avenue of research for prediction is to integrate
functional genomic information into predictions, so as to le-
verage existing functional genetic knowledge. In a promising
finding highlighting this potential (though not a GEA), the
ecologically important trait of flowering time in maize was
better predicted by genome-wide allele frequencies in open
chromatin (potentially cis-regulatory) regions than when
predicted by all genomic markers (Rodgers-Melnick et al,
2016).

Tactics for GEAs: A brief overview of
technical considerations

Our goal in this section is to provide some brief suggestions
for sound use of GEAs, to point the interested reader to
more in-depth technical publications, and to suggest some
areas where GEA techniques might be improved. For recent
comparisons of GEA approaches using simulations, see
Lotterhos and Whitlock (2014, 2015); Forester et al. (2016,
2018); Yoder and Tiffin (2018) and for reviews of these
methods see Rellstab et al. (2015); Hoban et al. (2016).
Despite their relative ease of implementation, there are sev-
eral points where care should be taken with the use of
GEAs. These points are misspecified statistical models, spuri-
ous associations due to population structure confounding,
and a failure to capture environmental selective gradients.

Statistical models

In principle, if one knew certain details about their study
system, including demographic rates and history, and the ge-
netic architecture of adaptive traits, one could rationally se-
lect the best GEA model. However, these details are rarely
known a priori, and the best GEA approaches might be
those that work well across a wide parameter space. Further
simulation studies, as well as empirical data on demography
and life history, are needed to determine the robustness of
GEA inferences to variation in genetic architecture, demo-
graphic patterns, and life history.

The main differences among GEA models are in their line-
arity, environmental dimensionality, and consideration of
population structure. Linear model GEAs are often based on
the same association models used for phenotypic GWAS,
but instead these environmental GWAS test whether differ-
ent alleles occupy different environments (with normally dis-
tributed errors; Lasky et al,, 2014; Yoder et al, 2014), though
environmental outliers may have unwanted influence
(Hancock et al, 2011). Others have implemented nonlinear
approaches such as using logit transforms of allele frequen-
cies (Coop et al, 2010), rank correlations between climate
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and allele frequency (Hancock et al, 2011), and regression
trees (Fournier-Level et al, 2022).

An additional consideration is whether to include a single
or multiple environmental variables in the model. Univariate
environmental correlations may be simplest to interpret, at
the price of ecological realism (see “Modeling environmental
variables” section). An alternate approach is to implement
models with multiple environmental variables, such as (lin-
ear model-based) redundancy analysis (Lasky et al, 2012;
Forester et al., 2018) or (regression tree-based) gradient for-
ests (Martinez-Berdeja et al, 2020).

Confounding with population structure
In some (perhaps many) cases, GEAs can reflect demo-
graphic processes rather than changing selection and local
adaptation. Individuals are often more closely related to
nearby individuals compared to individuals further away
(Vekemans and Hardy, 2004). This pattern is called isolation
by distance (IBD). IBD can arise for a number of reasons,
such as limited migration (Wright, 1943; Slatkin, 1993) and
recent population expansion (Excoffier et al, 2009).
Crucially, if environmental gradients are spatially autocorre-
lated (as climate gradients often are), then IBD could gener-
ate spurious associations between genotype and the
environment (Hoban et al, 2016). For example, Arabidopsis
exhibits IBD and also has recently spread into Europe from
southern glacial refugia (Alonso-Blanco et al, 2016). Since
many of the climate factors that matter for Arabidopsis lo-
cal adaptation also vary north-to-south (Agren and
Schemske, 2012; Monroe et al, 2016; Gienapp et al, 2017),
IBD might create spurious associations between genotype
and climate (Hancock et al, 2011). These patterns could
also be important for many crop species, which have often
recently spread from one or a few domestication locations
(Romay et al., 2013; Gutaker et al., 2020) and show substan-
tial patterns of IBD (Gutaker et al, 2020; Lasky et al, 2022).
It is often considered important to attempt to control for
IBD or relatedness (population structure) to reduce spurious
GEAs that inflate genome-wide false positive rates (Rellstab
et al, 2015). However, researchers are often most interested
in the top environmental GWAS hits and will rarely follow
up on all significant genome-wide loci, so it is not always
clear if a genome-wide false positive control is necessary
(Forester et al, 2018; Price et al, 2020). Nevertheless, com-
monly used GEA methods control for population structure
using model parameters that account for genome-wide (pu-
tatively indicating relatedness) associations with environ-
mental gradients (Coop et al, 2010; Hancock et al, 2011) or
fitcted latent factors that model relatedness (Frichot et al,
2013). An alternative approach is to control for spatial struc-
ture in GEAs that may arise from IBD (Lasky et al, 2012). In
general, when conducting many statistical tests across the
genome (as in GWAS), many markers will be “significantly”
associated even if the null model of no association is true
for all of them. This genome-wide false discovery rate can
be estimated or reduced with additional tests or statistical
adjustments (Han et al, 2009; Benjamini, 2010).

Lasky et al.

Separate from the problem of discovery in environmental
GWAS, researchers may be interested in testing whether a
functional natural variant shows evidence of local adapta-
tion to different environments. In this case, controlling for
false positives is important, so it is important to use one of
the GEAs that account for population structure. However, if
a known ecologically important variant shows a GEA, but
the GEA is not significantly different from the null expecta-
tion when controlling for population structure, this does
not mean the variant does not play a role in local adapta-
tion, but merely that the environmental association is not
strong support for this hypothesis. For example, Lasky et al.
(2015) noted that loss of photoperiod sensitivity alleles at
Maturity1 in sorghum landraces increased nearly to fixation
with decreasing latitude in southern Africa, a GEA that was
consistent with the ecological hypothesis of changing selec-
tion for photoperiod sensitivity. However, this association
was not significant after accounting for population structure,
indicating that many loci all across the genome show similar
latitudinal clines in southern Africa.

Modeling environmental variables

There are several considerations for modeling environments
for GEAs. Ideally, GEA would use an environmental variable
that perfectly captures changing selection. This variable
would likely be a combination of commonly measured envi-
ronmental variables. In reality, researchers have to make
their best educated guess to select or create environmental
variables to test in GEA. Ecological variation that drives
changing selection between populations is more complex
than, and may not be well-captured by, global gridded
monthly climate datasets. For this reason, a treatment of cli-
mate that specifically aims to characterize the potentially
stressful aspects may be better (e.g. bioclimatic variables;
Hijmans et al,, 2005).

Relatedly, models of growing seasons and plant growth
and development, built from heuristics or from first eco-
physiological principles, may be one way to build more eco-
logically realistic proxies for true selective gradients (Lasky
et al, 2012, 2015; Messina et al, 2018). Alternatively, naive,
data-driven approaches to statistical models of GEAs (e.g
gradient forests) could potentially capture some interactions
among environmental gradients (Fitzpatrick and Keller,
2015).

Are GEAs living up to their promise? And
how would we know?

In this section, we lay out how GEAs may be integrated into
a research program, based on existing knowledge of the
power of GEAs. To summarize, we suggest that GEAs may
be most useful for generating and testing hypotheses of lo-
cal adaptation for natural variants with known or highly
likely phenotypic effects. This approach is similar to “reverse
genetics” and might be termed “reverse ecological genetics.”
Our overarching rationale for this suggestion is that many
variants identified in GWAS (and likely environmental
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GWAS) will be false positives with no phenotypic influence
due to issues caused by population structure, synthetic asso-
ciations, and model misspecification, and also because we
lack experimental validation of candidate genes identified by
environmental GWAS. By contrast, there are many cases of
genetic variation in known QTL or genes with some func-
tional information that can reasonably be hypothesized to
be ecologically important, and reverse ecological genetics
with GEAs can help test these hypotheses.

Testing hypotheses generated by forward ecological
genetics

Despite the proliferation of environmental GWAS for discov-
ery of locally-adapted loci, most validations of environmen-
tal GWAS inferences have not validated specific genes. In
part, this gap may be due to the fact that population geno-
mics in nonmodel plants has advanced much more rapidly
than functional genomics. Also, experimental validation gen-
erally requires development of genetic stocks via methods
(e.g. NILs or gene editing) that are, at best, time-consuming
or, at worst, not possible in nonmodel plants. Because of
this lack of gene-level validation, we are left without a solid
understanding of the reliability of environmental GWAS
inferences. This a problem in general with GWAS, where
many more association studies are published than there are
follow-up experiments showing that the strongest associated
genes underlie a given QTL for the trait (Alsheikh et al,
2022; Figure 4).

While computer simulations have indicated that environ-
mental GWAS should help discover loci (Lotterhos and
Whitlock, 2015; Forester et al, 2016, 2018; Lasky et al, 2018;
Yoder and Tiffin, 2018), it is unclear how well these simula-
tions reflect the true underlying genetic architecture.
Furthermore, it is hard to assess environmental GWAS based
on the performance of the few known locally-adaptive posi-
tive control genes. Indeed, as mentioned above, environ-
mental GWAS often fails to find these loci as signals that
stand out across the genome. This does not mean that the
environmental GWAS results are incorrect, because these
“positive controls” were identified via alternate approaches
and are not necessarily expected to be genome-wide out-
liers. For instance, in a global sorghum diversity panel,
cloned climate-adaptive natural variants at the WD40
transcriptional regulator gene Tanninl and Maturityl,
encoding PSEUDO-RESPONSE REGULATOR 37 (PRR37),
were associated with expected climate variables, but were
not genome-wide outliers (Lasky et al., 2015). However,
these known locally-adapted genes cannot support the hy-
pothesis that environmental GWAS are working as
intended in empirical systems. Better negative controls,
such as testing randomly selected genes (Chong and
Stinchcombe, 2019), could also help assess the utility of
environmental GWAS. Environmental GWAS may turn
out to be a good route for the discovery of locally-
adapted loci, but conclusions about the efficacy of envi-
ronmental GWAS are premature.
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To remedy this lack of certainty surrounding the question
of whether environmental GWAS is a useful and efficient
route to discovery, the field requires more studies that sys-
tematically test individual locus hypotheses generated from
environmental GWAS. We suggest several potential routes
to the validation of loci identified by environmental GWAS.
To conclusively demonstrate that a locus is involved in local
adaptation requires the generation of NILs or genetically
engineered genotypes (e.g. transgenic or gene-edited lines)
that recapitulate natural variation isolated to the single gene
of interest, and the demonstration that the gene-specific
natural variation causes fitness tradeoffs across the candi-
date environmental gradient. This latter condition has not
yet been met by any environmental GWAS study. ldeally,
these experiments would be conducted in contrasting field
environments that represent the environments to which
each allele is putatively adapted; if the single locus variation
resulted in performance tradeoffs under these conditions,
these results would indicate likely local adaptation. When
the relevant field environments are logistically prohibitive, it
would still be a major advance to use naturalistic conditions
replicated elsewhere (e.g field, greenhouse, or growth cham-
ber). A separate approach to validating GEAs or environ-
mental GWAS is to test whether alleles at multiple
identified loci allow prediction of plant fitness responses to
a given environment (Lasky et al, 2015; Gienapp et al, 2017;
Gates et al, 2019), although this approach does not allow
for strong conclusions about any individual genes.

Using reverse ecological genetics to test hypotheses
Researchers may often develop a hypothesis that a particular
gene is ecologically important, and in particular that varia-
tion in the function of this gene (e.g. expression level, con-
text, or protein function) might contribute to tradeoffs in
plant fitness across environments. If natural variation exists
in this gene, the researchers may also hypothesize this varia-
tion is maintained due to changes in selection among popu-
lations, contributing to local adaptation. By contrast, despite
the initial hypothesis of ecological importance, the candidate
gene might show very little natural variation, suggesting that
positive or purifying selection dominates over spatially vary-
ing selection.

If such a candidate gene, when genotyped in multiple
populations, does exhibit variation, then GEAs are one way
to test the hypothesis that this variation is locally adapted.
One benefit of testing the hypothesis of local adaptation us-
ing GEAs and the geographic distributions of alleles at this
gene is that these population genetic patterns can suggest
the potential value of each allele under a much wider range
of environmental and genetic contexts than can be quickly
evaluated by researchers experimentally. GEAs can suggest
potential axes for ecophysiological tradeoffs not previously
considered by researchers.

An example of our suggested implementation can be
found in a GEA study (Bellis et al, 2020) that built on the
identification of the LGST gene (Gobena et al, 2017). First,
Gobena et al. (Gobena et al,, 2017) fine-mapped a QTL in
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A Current disciplinary programs: Forward ecological genetics
vs. reverse molecular genetics
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Figure 4 The role of GEA in understanding the genome—-phenome landscape for adaptation. Understanding the molecular basis of adaptation is a
major goal of plant biology, but various subdisciplines focus on different parts of the genome—phenome landscape (A). For instance, ecological
geneticists generally use a forward genetics approach, starting with proxies for fitness or traits thought to be involved in local adaptation, then us-
ing genome-wide mapping approaches such as environmental GWAS to generate hypotheses on the molecular basis of adaptation. Note that the
phenome is the complete set of traits of an organism, and environmental GWAS may capture multiple phenotypes locally adapted along a gradi-
ent. Unfortunately, due to the large number of hypotheses generated by environmental GWAS and the technical challenge of testing each one,
most environmental GWAS-based hypotheses have not yet been tested (like phenotypic GWAS). By contrast, molecular geneticists more often
use reverse genetics approaches and may not have direct access to ecologically relevant field environments to test hypotheses on the adaptive
role of genes and molecular variants. B, A collaborative interdisciplinary approach that integrates ecological and molecular genetics may be needed
to more rigorously and efficiently test hypotheses. lllustration by Gina Cerimele.

sorghum for resistance to the parasitic plant purple witch-  After the identification of a loss-of-function allele at the
weed (Striga hermonthica), using a biparental mapping pop-  LGST locus as being putatively resistant, several questions
ulation and other subsequent crosses (Gobena et al, 2017).  remained unanswered. For example, might this resistance
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allele underlie local adaptation to S. hermonthica parasitism
by sorghum landraces? If so, might this allele be beneficial in
a wide range of field settings across tropical Africa where S.
hermonthica is prevalent? Is this allele beneficial in a wide
range of genetic backgrounds? Are there potential tradeoffs
associated with this allele? Are additional alleles at LGS7 in-
volved in local adaptation in sorghum landraces? GEAs and
population genomics were well-suited to make quick prog-
ress on these questions. Using GEA, Bellis et al. (Bellis et al,
2020) found that the alleles identified by Gobena and col-
leagues were present in greater frequencies in regions where
S. hermonthica was most prevalent, which also held true for
diverse genetic backgrounds and across West and East
Africa. However, Bellis et al. (Bellis et al,, 2020) also showed
that these putative resistance alleles were never carried by a
majority of local sorghum landraces, even in the worst S.
hermonthica-prone regions, and that where S. hermonthica
is rare, the resistance alleles are essentially absent. These
GEA findings supported a hypothesis of local adaptation at
LGS7 and motivated Bellis et al. (2020) to further search for
tradeoffs at LGST with additional phenotyping

Overall, published GEA analyses of verified natural variants
in plants suggest that the simplest models for the genetic
basis of environmental adaptation (e.g. a limited number of
relatively common major variants in master regulators or
structural genes) may not be prevalent in nature. Instead,
more complex genetic architectures that encompass many
genes and their direct and indirect interactions, may be
prevalent for ecologically important traits (Rockman, 2012;
Mathieson, 2021). In such case, it will be important to use
GEAs that explicitly consider these architectures (e.g. multi-
variate and nonlinear approaches; Fitzpatrick and Keller,
2015; Forester et al, 2018), although the challenges remain
as to how to explore the large number of potential genetic
interactions and how to apply knowledge of polygenic local
adaptation.

Conclusion

Despite the rapid adoption of GEAs and environmental
GWAS, many important questions remain on the validity
and interpretation of their findings, largely arising from fun-
damental unanswered questions on the genetic architecture
of adaptation. We outlined strategies that could better
ground GEAs and method development in the underlying
hypotheses on genetic architecture and better test environ-
mental GWAS-generated hypotheses using genetics and eco-
physiology. When combined with a rigorous hypothesis
testing framework, GEAs will have the potential to facilitate
our understanding of the molecular basis of climate adapta-
tion and plant improvement.
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