
Molecular Ecology (2012) 21, 5512–5529 doi: 10.1111/j.1365-294X.2012.05709.x
Characterizing genomic variation of Arabidopsis
thaliana: the roles of geography and climate
JESSE R. LASKY,* DAVID L. DES MARAIS, * JOHN K. M C KAY,† JAMES H. RICHARDS,‡

THOMAS E. JUENGER* and TIMOTHY H. KEITT*

*Section of Integrative Biology, University of Texas at Austin, 1 University Station A6700, Austin, Texas 78712-0253, USA,
†Bioagricultural Sciences and Pest Management, Colorado State University, Campus delivery 1177, Fort Collins, Colorado

80523, USA, ‡Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, California 95616,

USA
Corresponde

E-mail: jesser
Abstract

Arabidopsis thaliana inhabits diverse climates and exhibits varied phenology across its

range. Although A. thaliana is an extremely well-studied model species, the relationship

between geography, growing season climate and its genetic variation is poorly

characterized. We used redundancy analysis (RDA) to quantify the association of

genomic variation [214 051 single nucleotide polymorphisms (SNPs)] with geography

and climate among 1003 accessions collected from 447 locations in Eurasia. We identified

climate variables most correlated with genomic variation, which may be important

selective gradients related to local adaptation across the species range. Climate variation

among sites of origin explained slightly more genomic variation than geographical

distance. Large-scale spatial gradients and early spring temperatures explained the most

genomic variation, while growing season and summer conditions explained the most

after controlling for spatial structure. SNP variation in Scandinavia showed the greatest

climate structure among regions, possibly because of relatively consistent phenology and

life history of populations in this region. Climate variation explained more variation

among nonsynonymous SNPs than expected by chance, suggesting that much of the

climatic structure of SNP correlations is due to changes in coding sequence that may

underlie local adaptation.
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Introduction

Spatial selective gradients can drive local adaptation

such that local genotypes have greater fitness than non-

local genotypes. Local adaptation may underlie a sub-

stantial portion of genotypic and phenotypic variation

among populations of a species. However, the aspects

of environmental variation that drive selective gradients

are poorly known for most species. The importance of

selective gradients and local adaptation may vary across

spatial scales and within a species range (Manel et al.

2010; Lee & Mitchell-Olds 2011; Urban 2011), although
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such patterns are also poorly understood. Selective gra-

dients and local adaptation may leave footprints on

spatial genomic variation that contains rich information

about environmental interactions (Manel et al. 2010;

Sork et al. 2010; Lee & Mitchell-Olds 2011; Salathé &

Schmid-Hempel 2011). The increasing availability of

genomic marker data combined with data on geo-

graphic variation in environment can complement tradi-

tional approaches to understanding genotypic and

phenotypic variation (Hancock et al. 2008; Fournier-

Level et al. 2011).

Arabidopsis thaliana (Brassicaceae) is a key model dicot

plant species and is a leading study system for under-

standing how evolution and ecology shape genomic

variation (Mitchell-Olds 2001). Arabidopsis thaliana was
� 2012 Blackwell Publishing Ltd
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the first plant to have its genome fully sequenced and

thousands of scientists have investigated its develop-

ment, physiology and molecular biology. The existing

knowledge of A. thaliana is an immense resource for

studying mechanisms of natural variation because of

the unparalleled opportunities to link population ecol-

ogy to molecular biology (Mitchell-Olds 2001; Tonsor

et al. 2005; Metcalf & Mitchell-Olds 2009). Determining

the ecological context of genomic variation is essential

to predicting evolutionary trajectories of A. thaliana

(Bergelson & Roux 2010). Despite these opportunities,

researchers have only recently begun to connect spatial

environmental variation in the field to potentially adap-

tive genomic variation in A. thaliana (Fournier-Level

et al. 2011; Hancock et al. 2011).

Both climate and ecologically important traits vary

extensively across the native Eurasian range of A. thali-

ana (Hoffmann 2002; Beck et al. 2008) and some pheno-

typic variation likely represents local adaptation to

climate. Common garden experiments with inbred lines

of wild origin, or accessions, have demonstrated pheno-

type correlations to latitude (Li et al. 1998; Stinchcombe

et al. 2004; Lempe et al. 2005), altitude (Picó 2012) and

climate of origin (Hannah et al. 2006; Christman et al.

2008; McKay et al. 2008; Hancock et al. 2011; Montesi-

nos-Navarro et al. 2011). However, by necessity, com-

mon garden studies sample incomplete portions of

climate space and are limited in their ability to reveal

which climatic gradients have the strongest association

with local adaptation. Although greenhouse experi-

ments are able to isolate causal factors, they do so at

the expense of limited fidelity to environmental

regimes. Natural selective gradients are likely not com-

prised of single climate variables devised by scientists,

but rather complex, possibly nonlinear, combinations of

climate variables (Whittaker et al. 1973). Hence, analysis

of large field data sets plays an important role comple-

mentary to experimental approaches.
The challenge of phenology in studying local
adaptation

Intraspecific phenological variation presents a significant

challenge to identifying environmental gradients under-

lying local adaptation because not all individuals experi-

ence climate in the same way. Climate driven natural

selection depends on the timing of climate events rela-

tive to temporal life cycle patterns (Stenseth & Mysterud

2002; Helmuth et al. 2005; Korves et al. 2007). Some

A. thaliana plants are rapid-cycling annuals, completing

their life cycle within a growing season and over-winter-

ing as seeds (Picó 2012). Other plants germinate in the

fall and overwinter as rosettes, flowering in the spring

(i.e. winter annuals). This life history variation is caused
� 2012 Blackwell Publishing Ltd
by both genetic and environmental variation (Koornneef

et al. 1998; Michaels & Amasino 1999; Johanson et al.

2000; Stinchcombe et al. 2004; Wilczek et al. 2009).

Among other factors, A. thaliana phenology is

affected by temperature (Wilczek et al. 2009), water

availability and day length (Corbesier & Coupland

2005; Lempe et al. 2005). Growing conditions across

northern Eurasia typically occur in spring, summer

and fall, whereas in southern Europe and Central

Asia, summer conditions are typically too dry and hot

for growth. In southern Europe, growing conditions

primarily occur in winter and spring (e.g. Montesinos

et al. 2009). Ignoring this variation could lead to omis-

sion of important climate-genome correlations owing

to temporal misalignment between proposed selective

gradients and actual growth periods. Unfortunately,

the natural phenology of most accessions is unknown.

Here, we develop models of vegetative growth phe-

nology based on climate. Previously, Wilczek et al.

(2009) used a model of variation at several flowering

time loci to closely predict flowering time in common

gardens of varied environment, based on the accumula-

tion of photothermal units since germination. However,

this model does not account for seasonal water limita-

tion and considers limited environmental variation.

Knowledge of natural germination period would be

required to use such a model for our purposes. In the

absence of phenological data from sites where acces-

sions were collected, we used climate diagram models

of potential growing periods based on temperature and

precipitation (Walter & Lieth 1960). Climate diagrams

are a valuable ecological tool to identify likely growing

seasons for specific plant species and populations

(e.g. McKay et al. 2008; Huston & Wolverton 2009).
Characterizing selective gradients

Our goal is to identify which particular gradients in a

high-dimensional environment create selective gradients

along which local populations are adapted. Correlation

between allele frequencies and environmental gradients

is evidence for local adaptation (Endler 1986; Hancock

et al. 2008, 2011). Environmental gradients underlying

local adaptation may be identified by finding multivari-

ate gradients along which many loci show correlated

variation (Manel et al. 2010; Sork et al. 2010; Lee &

Mitchell-Olds 2011). Candidate environmental gradients

can then be tested for genotype-dependent effects on fit-

ness in common garden experiments.

Simple correlations can be misleading, however,

because of the difficulty in separating adaptive genetic

variation from variation caused by population structure,

both of which frequently exhibit spatial autocorrelation.

Methods commonly used in community ecology to
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model simultaneous environmental and dispersal effects

can be applied to genomics. We extend previous

approaches to control for population structure (e.g. Han-

cock et al. 2008) using redundancy analysis (RDA), a

multivariate regression technique often employed by

community ecologists when both predictors and

responses are multivariate (Legendre & Legendre 1998).

We use RDA to disentangle the association of spatial

structure (a proxy for population structure) and climate

with genomic variation (Urban 2011). Additionally, we

use RDA to study how: (A) the spatial structure of geno-

mic variation changes with spatial scale, for comparison

with previous studies of population structure (e.g. Shar-

bel et al. 2000) and (B) the climatic structure of genomic

variation changes across regions of the range of A. thali-

ana, which has not been previously characterized.

Recent studies have identified an enrichment of non-

synonymous variants among single nucleotide polymor-

phisms (SNPs) associated with individual climate

gradients (Hancock et al. 2011) and found that favoured

alleles in common gardens had nonrandom climatic sig-

natures (Fournier-Level et al. 2011). We build upon this

work by studying climate associations with allele fre-

quency variation in a multivariate context to identify

specific climate gradients explaining genomic variation.

We model the association between multivariate predic-

tors (climate and spatial gradients) with multivariate

responses (SNP allele frequencies). Modelling the multi-

dimensional association between environment and

genetic variation may more accurately capture selective

gradients that are combinations of multiple climate vari-

ables (Whittaker et al. 1973) and their effect on allele

frequencies across many loci.

Here, we characterize the association of geography

and climate with genomic variation across the range of

A. thaliana. The remainder of this paper is organized as

follows. First, in novel analyses we quantify the propor-

tion of genome-wide SNP variation explained by cli-

mate and spatial gradients and the regional change in

SNP associations across the species range. Next, we

identify specific climate variables that may be the

strongest selective agents affecting local adaptation in

A. thaliana. Third, we test for enrichment of climate

associations among different classes of polymorphisms

with varying phenotypic effects. Last, we identify out-

lier loci with the strongest associations to multivariate

climatic gradients.
Methods

Data

Genome data. We used published data on 1307 Arabidop-

sis thaliana accessions that were genotyped at 214 051
single nucleotide polymorphisms (SNPs) (Kim et al.

2007; Atwell et al. 2010; Hancock et al. 2011; Horton

et al. 2012). On average, one SNP occurred every

�500 bp in the data set, giving sufficient marker cover-

age to resolve variation among most genes (Kim et al.

2007). SNP categories of synonymous, nonsynonymous

and intergenic were identified using TAIR10 as imple-

mented by Hancock et al. (2011).

The SNP data set included latitude—longitude coor-

dinates of origin for 1302 accessions. Collection loca-

tions were unknown for five accessions and these were

discarded from climate analyses. Sampling was global

but most dense in northern and western Europe and

relatively sparse in eastern Europe and central Asia

(Horton et al. 2012). Samples were collected by dozens

of researchers over the last several decades, sometimes

collecting more than one individual per population.

Analyses were restricted to accessions found in the

Eurasian native range (Hoffmann 2002). We also elimi-

nated accessions that likely do not originate from their

reported collection location (Anastasio et al. 2011), leav-

ing a total of 1003 accessions from 447 locations across

Eurasia.

Climate data. We compiled climate data for each acces-

sion collection location. Climate data sources were glo-

bal in coverage and publicly available, but varied in

spatiotemporal resolution and parameters.

WorldClim data were spatially interpolated from

1950 to 2000 weather station data and resolved to 30

arc-second grid squares by Hijmans et al. (2005). Mean

monthly minimum, mean and maximum temperatures

and mean monthly precipitation averaged across years

of the time period were estimated by Hijmans et al.

(2005). WorldClim additionally contains derived vari-

ables of biological importance. A measure of aridity

(mean annual precipitation divided by mean annual

potential evapotranspiration) using WorldClim data

was also included (CGIAR-CSI Global-Aridity database;

Zomer et al. 2007, 2008).

We used Climate Research Unit (CRU) data to esti-

mate vapour pressure deficit (VPD). VPD is the differ-

ence between water vapour partial pressure and

maximum potential pressure at a given air temperature

and reflects evaporative demand on plants (Johnson &

Ferrell 1983). Variation in VPD predicts variation

among accessions in an important trait related to water

use and stomatal conductance, suggesting this is an

important selective gradient for local adaptation (Christ-

man et al. 2008). CRU data are 1961–1990 weather sta-

tion data interpolated to 10¢ resolution (New et al.

2002). We took mean monthly relative humidity and

temperature from CRU and calculated VPD at mean

conditions (Murray 1967).
� 2012 Blackwell Publishing Ltd



GEOGRAPHY, CLIMATE AND ARABIDOPSI S G ENOMI CS 5515
A third database was used to estimate inter-annual

variability in precipitation, which may select for pheno-

typic plasticity in the form of drought acclimation.

NCEP reanalysis data were generated on a T62 grid

(resolution �210 km) for the years 1948–2009 (data pro-

vided by NOAA ⁄ OAR ⁄ ESRL PSD, http://www.esrl.noaa.-

gov/psd/). Reanalysis is a global climate model using a

variety of inputs, including both locally and remotely

sensed surface and atmospheric data (Kalnay et al.

1996). The wide array of data used in the reanalysis

model makes it less susceptible to error than climate

data that is interpolated from sparse weather station

data. We took monthly surface precipitation rate for

grid cells and calculated each calendar month’s coeffi-

cient of variation (CV) across years and the CV of

annual precipitation.

The fourth and final database contained information

on spatial variation in photosynthetically active radia-

tion (PAR). The NASA ⁄ GEWEX Surface Radiation
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Budget 3.0 model aggregates a variety of data inputs to

estimate radiation on a geographic coordinate grid with

1� cells (data available at http://eosweb.larc.nasa.gov/

PRODOCS/srb/table_srb.html). We calculated average

seasonal PAR for each accession location for the years

1983–2007. A table of all climate variables is provided

(Table S1, Fig. S1, Supporting Information).

Predicting growing season and its climate. We used precip-

itation and temperature data to model the months of

the year when accessions are likely to grow (climate

diagram model, Walter & Lieth 1960). Potential growing

months were defined as those with abundant soil mois-

ture and mean temperature ‡4 �C (Fig. 1). Soil moisture

was considered abundant in a given month if mean pre-

cipitation (mm) ‡2 * mean temperature (�C, Walter &

Lieth 1960). Kas-2 and Pi-2 are high altitude accessions

with no mean monthly temperatures above 4 �C,

although summer months did exceed 0 �C. Months
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Fig. 1 Climate diagrams representative

of monthly mean precipitation and tem-

perature conditions experienced by

Arabidopsis thaliana. When soil moisture

is abundant, the precipitation line (blue)

is above the temperature line (red). The

dashed red line shows 4 �C, which was

the minimum monthly mean tempera-

ture required for growing season

months. Growing season months are

indicated by black dots.
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above 0 �C were considered growing season months for

these two accessions.

We calculated climate conditions for the growing sea-

son months of each accession, including mean values of

monthly precipitation, VPD and minimum, mean and

maximum temperature. We calculated CV of mean

monthly precipitation within the growing season.

Finally, we calculated the inter-annual CV of each

growing season month’s precipitation and took the

mean of monthly inter-annual CVs.

Spatial variables describing geographic variation. Geographic

variation among accessions was modelled with principal

components of neighbourhood matrices (PCNM), which

are variables describing spatial structure (Borcard &

Legendre 2002; Manel et al. 2010). Anisotropic and non-

linear isolation by distance caused by population struc-

ture occur in A. thaliana (Schmid et al. 2006) and can be

modelled by PCNM as explanatory variables in regres-

sion on genetic variation. PCNM were calculated follow-

ing Borcard & Legendre (2002). A distance matrix

between collection locations was created using great-cir-

cle distances along the Vincenty Ellipsoid in the R ‘geo-

sphere’ package. The distance matrix was truncated

above a threshold equal to the minimum distance

required to form a network joining all accessions

together (i.e. a minimum spanning tree). Distances above
April max. temp. (C)
> 19

< 2

August prec. (mm)
> 200

0

PCNM 1
High

Low

(A)

(B)
the threshold were re-assigned to four times the thresh-

old. This threshold offers a reasonable balance between

resolving fine and coarse-scale spatial structure (Borcard

& Legendre 2002). We then calculated the eigenvectors

of the distance matrix (i.e. PCNM) for use as predictor

variables of genomic variation (e.g. Fig. 2B), keeping

only eigenvectors of positive eigenvalues.
Explaining genomic variation with geography and
climate

We estimated the degree to which genomic variation

among accessions was explained by geographic distance

and local climate. We employed redundancy analysis

(RDA), a multivariate regression technique (van den

Wollenberg 1977; Legendre & Legendre 1998). RDA can

be used in regression problems with multivariate pre-

dictors (here, climate and space) and multivariate

responses (here, biallelic SNPs). Like typical partial

regression, partial RDA can be conducted on residuals

from another set of explanatory variables, allowing us

to control for spatial structure.

Redundancy analysis finds linear combinations of

multiple explanatory variables that explain linear com-

binations of multiple response variables, such that the

variance explained in response variables is maximized.

RDA identifies multiple collinear variables that explain
Fig. 2 1003 Eurasian accessions includ-

ed in redundancy analysis (RDA). (A)

Accessions are shown with April maxi-

mum temperature, which was the

climate variable that explained the most

SNP variation in an RDA with all acces-

sions. (B) Accession colour varies to

show the first PCNM spatial variable,

describing spatial structure among

accessions. August precipitation is

shown, which was the second most

important climate variable after remov-

ing PCNM spatial effects.

� 2012 Blackwell Publishing Ltd
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the response, any of which might be causative, in con-

trast to typical multiple regressions where colinearity

among predictors may obscure their role. RDA linear

combinations are referred to as canonical axes and are

orthogonal. In our case, RDA canonical axes are com-

posed of many covarying loci also correlated with envi-

ronmental variation; in this sense they are akin to

haplotype-environment correlations. Canonical eigena-

nalyses like RDA are increasingly used to identify envi-

ronmental factors explaining genomic variation (Manel

et al. 2010; Sork et al. 2010; Lee & Mitchell-Olds 2011;

Salathé & Schmid-Hempel 2011). RDA and associated

analyses were implemented with the ‘vegan’ package

(Oksanen et al. 2011) in R.

We used the RDA framework in four different ways

to study the association between climatic, geographic

and genomic variation in A. thaliana.

Partitioning genomic variation explained by climate and

geography. We used variance partitioning to estimate

the total proportion of genomic variation explained by

all climate and spatial variables and how these correla-

tions change across Eurasia. Variance partitioning uses

RDA to estimate how much variation in multivariate

responses is explained by the independent contribution

of multiple sets of explanatory variables and the contri-

bution of their collinear portion (Peres-Neto et al. 2006).

SNP variation was partitioned into that explained inde-

pendently by all climate variables, PCNM and by their

collinear portion. Colinearity between climate variables

and spatial structure (PCNM) describes spatially auto-

correlated climatic variation. We tested the null hypoth-

esis that each set of climate and PCNM variables

explained no SNP variation, using variance partitioning

conducted on 1000 random permutations. Collection

sites were permuted among groups of accessions col-

lected at the same site (Legendre & Legendre 1998).

We also conducted variance partitioning on regional

subsamples to assess patterns at smaller scales. We

used five groups with sufficient sample size (minimum

n = 96) of the eight Eurasian groups used in Horton

et al. (2012). Sample sizes were smaller in the regional

groups compared with the full Eurasian panel, so we

removed some relatively redundant climate variables

to avoid over-parameterizing RDA models. We

removed even-numbered month climate variables from

regional analyses because they were typically highly

correlated with a preceding and following month

(Fig. S1, Supporting Information). We conducted a

complementary set of analyses where we stratified var-

iance partitioning and RDA into two groups of acces-

sions predicted to have different life histories (i.e. early

versus late-flowering accessions, or spring versus win-

ter annuals, see Supporting Information).
� 2012 Blackwell Publishing Ltd
The importance of specific climate and spatial

variables. After calculating the genomic variation

explained by sets of climate and spatial variables

(above), we used RDA to: (A) estimate how the spatial

structure of genomic variation changes across spatial

scales, (B) identify specific climate variables that may

be important axes of local adaptation and (C) identify

specific climate variables that may be important in

local adaptation after correcting for spatial effects. We

conducted three separate RDA, where SNP variation

among accessions was the response. The predictor

variables in the first RDA (A) were PCNM eigenvec-

tors. In the second RDA (B), climate variables were

predictors. The third RDA (C) was a partial RDA

where we first removed effects of PCNM spatial vari-

ables as a method of controlling for population struc-

ture (Urban 2011). After removing spatial effects,

climate variables were then used to explain SNP resid-

uals (i.e. partial RDA). In RDA, where we compared

the importance of specific climate variables (B and C),

we only used WorldClim variables because other cli-

mate data were of much coarser resolution than

WorldClim and their inclusion could have biased our

comparisons of the amount of variation explained. In a

supplemental analysis, we used RDA to identify cli-

mate variables explaining the most SNP variation

among accessions stratified by accession flowering time

category (early versus late) because life history may

reinforce variation in local adaptation to climate (see

Supporting Information).

The explanatory contribution of an independent vari-

able (PCNM eigenvector or climate variable) in an

RDA, Px, was calculated using weighted sums of abso-

lute correlations to canonical axes in RDA,

Px ¼

P

k

rxkj jkk

r2

where rxk is the correlation coefficient of variable x to

canonical axis k, and kk is the eigenvalue of axis k, equal

to the variance in the SNP matrix explained by axis k.

The product is summed across all axes k, giving the

total variance explained by variable x and divided by

the total variance in SNPs r2. Thus, Px is a measure of

the proportion of genomic variation among accessions

explained by a predictor variable within RDA. Candi-

date climate variables underlying local adaptation to cli-

mate were considered those with the greatest Px.

We estimated how geographic spatial structure of

genomic variation changes across spatial scales. We

compared the proportion of genomic variation

explained, Px, by each PCNM axis to the spatial scale

described by that axis to estimate how genomic varia-

tion changes across spatial scales. The spatial scale
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described by each PCNM axis was estimated with

Moran’s I, a measure of spatial autocorrelation (e.g.

Manel et al. 2010). We conducted a nonparametric

Spearman’s rank correlation test between the values of

Px and I for PCNM axes.

Enrichment of SNP categories for climatic associations. We

tested null hypotheses that three different classes of

SNPs had similar amounts of variation explained by

climate compared with random SNPs. We conducted

variance partitioning on each set of SNPs: (i) nonsynon-

ymous, (ii) synonymous, and (iii) intergenic, measuring

how much variation was explained by climate and by

climate independent of space. The observed portions of

variation explained in each set were compared with

null distributions generated by permutations of SNP

classifications. For each null permutation, the classifica-

tion of SNPs was shifted a random distance across the

genome following Hancock et al. (2011). Shifting classi-

fications maintained their order and the linkage dis-

equilibrium of each category. After permuting

classifications, we re-calculated the proportion of SNP

variation in each category explained by climate to

obtain a null distribution.

Identifying outlier loci. We conducted an outlier analysis

with RDA results to identify loci most strongly linked

with multivariate environmental gradients. Outlier loci

identified in RDA can be thought of as indicators for

major multi-loci haplotypes most strongly correlated

with multi-variate environmental conditions. An advan-

tage of outlier analysis in RDA is that we can identify

loci correlated with the multi-variate environmental

gradients experienced by plants that may be important

to local adaptation, as opposed to testing climate vari-

ables individually (e.g. Hancock et al. 2011). Outliers

were identified as SNPs with the greatest squared

scores along the first RDA axis. We also identified out-

lier SNPs from partial RDA after removing effects of

spatial structure on SNPs, because isolation by distance

owing to limited dispersal can generate spurious

genetic-environmental correlations.

To learn more about the function of outlier loci, we

conducted a test for enrichment of gene ontology (GO)

terms. GO terms are a set of standardized terms for

annotation of gene functional and structural roles com-

piled from existing molecular literature. We selected the

1000 SNPs with the greatest squared score on the first

RDA axis (i.e. those in the �0.5% tail) of (i) RDA on

raw SNPs and (ii) partial RDA on SNPs after removing

the effects of spatial structure. We tested for over-repre-

sentation, or enrichment, of each GO term in the set of

all genes within 5 kb of the tail SNPs using the hyper-

geometric test (agriGO web tool; Du et al. 2010). We
conducted false discovery rate (FDR) control on the

enrichment tests and report all GO terms with

FDR < 0.05.
Results

Partitioning genomic variation explained by climate
and geography

Climate and space combined explained 22.6% of single

nucleotide polymorphism (SNP) variation among all

accessions, as determined by variance partitioning

(Fig. 3, Table S4, Supporting Information). Climate and

space explained less SNP variation among the regional

subsets, with the exception of the subset from Scandina-

via (33.5%). Climate and space explained a much larger

portion of SNP variation among predicted late-flower-

ing accessions (39.5%, see Supporting Information). The

observed portions of variation explained by climate

variables and by PCNM were greater than the portions

explained by each set in all of 1000 permuted data sets

(all permutation tests P < 0.001). The observed portion

of SNP variation explained by growing season variables

independent of spatial variables was also greater than

the portion explained by each permuted data set (per-

mutation test P < 0.001).
The importance of specific climate and spatial variables

In general, the spatial PCNM eigenvectors of higher

rank and describing larger spatial scales, that is greater

Moran’s I, explained greater portions of SNP variation

than eigenvectors of lower rank and smaller spatial

scales (Figs S4 and S5, Supporting Information). The

spatial scales of PCNM (Moran’s I) were positively cor-

related with the SNP variation explained by each

PCNM (Px; Spearman’s rank correlation q = 0.69,

P < 10)16). Accordingly, the first PCNM eigenvector,

which separated northern European accessions from

those in western Europe (Fig. 2B), explained the great-

est portion of SNP variation, 6%.

Winter and early spring temperatures explained the

greatest portions of genomic variation among Eurasian

accessions (Table 1; see Fig. S8 for RDA biplot, Sup-

porting Information). After removing the effect of spa-

tial structure, minimum temperatures of the growing

season and summer precipitation explained the greatest

portions (Fig. S9, Supporting Information).
Enrichment of SNP categories for climatic association

The proportion of both nonsynonymous (NS) and syn-

onymous (S) SNP variation explained by climate was

significantly greater than the SNP variation explained
� 2012 Blackwell Publishing Ltd
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Fig. 3 Variance partitioning results for

different subsets of accessions. R2

(adjusted) of explanatory variables is

represented by area, unexplained resid-

ual variation is shown in white. Even-

month climate variables were removed

in variance partitioning for regional

subsets because regional subsets con-

tained fewer observations.
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for each category in any of 1000 permutations (two-

tailed permutation tests for NS and S-SNPs, both

P < 0.002, Fig. 4). Additionally, the proportion of NS-

and S-SNP variation explained by climate independent

of spatial structure was greater than the total SNP var-

iation in all permuted SNP sets (two-tailed permuta-

tion test P < 0.002). Unlike variation in S- and NS-

SNPs, the proportion of intergenic (IG) SNP variation

explained by climate was not significantly different

from null permutations (proportion explained by cli-

mate, two-tailed permutation test P = 0.59; proportion

explained by climate independent of space, P = 0.36).

Climate explained 0.07% more variation among

S-SNPs compared with among NS-SNPs, although this

difference was not significant (two-tailed permutation

test between NS and S-SNPs, P = 0.43). Climate also

explained 0.16% more variation among S-SNPs com-

pared with among NS-SNPs after removing spatial
� 2012 Blackwell Publishing Ltd
structure and the difference was significant (two-tailed

permutation test P < 0.002).
Outlier loci

Squared SNP scores on the first RDA axis (indicating

loci associated with the first multivariate climatic axis)

varied widely across the genome (Fig. 5A). The SNP

with the highest squared score on the first RDA axis

was in the coding region of an unknown gene next to

the WRKY38 transcription factor (Table 2). Squared

SNP scores on the first axis were different for partial

RDA after removing the effects of spatial structure

(compare panels A and B; Fig. 5). After removing spa-

tial structure, the SNP with the highest correlation to

the first RDA axis was in the intergenic region in the

MAF2-5 (MADS-box affects flowering) cluster of four

related transcription factors (Table 3).



Table 1 Climate variables and the per cent of single nucleotide polymorphism (SNP) variation they explain in redundancy analysis

(RDA) (100*Px). Only the top 15 climate variables are shown for each RDA

RDA on raw SNPs Partial RDA after removing effects of spatial structure

Climate variable

Percent of SNP

variation explained Climate variable

Percent of SNP

variation explained

Max. April temp. 5.51 Mean monthly min. temp. grow. seas. 0.83

Min. February temp. 5.40 August prec. 0.83

Max. March temp. 5.39 Min. October temp. 0.82

Mean April temp. 5.36 Mean prec. grow. seas. 0.82

Min. March temp. 5.32 Prec. warmest quart. 0.82

Min. December temp. 5.32 Prec. wettest month 0.81

Min. January temp. 5.32 June prec. 0.80

Min. temp. coldest month 5.31 Prec. wettest quarter 0.79

Mean February temp. 5.24 Mean diurnal temp. range 0.79

Min. November temp. 5.22 August min. temp. 0.77

Mean temp. coldest quarter 5.20 September min. temp. 0.75

Mean January temp. 5.19 July min. temp. 0.74

Mean March temp. 5.16 May prec. 0.73

Mean November temp. 5.16 June min. temp. 0.73

Mean May temp. 5.14 Mean temp. wettest quarter 0.71

Fig. 4 Enrichment analysis of climatic

structure in different classes of SNPs.

The y-axis shows fold enrichment,

which equals the portion of SNP varia-

tion explained divided by the mean por-

tion explained in null permuted SNP

sets. Grey dots represent 1000 null per-

mutations of SNP categories. Large dots

represent observed climatic structure in

SNP sets.
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Fifty-seven types of molecular function (GO terms)

were significantly enriched (FDR < 0.05) in the tail of

SNPs with the greatest squared scores on the first

canonical axis (Table 4). Thirteen of the terms with the

strongest enrichment were associated with stimulus

responses, including a number of abiotic stress

responses. After removing the effects of spatial struc-

ture, only 24 GO terms were significantly enriched
(Table 4). Four of the significant terms were associated

with positive regulation of cellular processes.
Discussion

Among all accessions, we found that climate (15.7%)

and space (16.9%) explained roughly similar portions of

genomic variation. A large portion of genomic variation
� 2012 Blackwell Publishing Ltd
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Fig. 5 Genome-wide plots of squared
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ings on the first RDA axis after remov-

ing the effects of spatial structure.
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explained by space is likely due to population structure

generating isolation by distance (Sharbel et al. 2000).

However, latent spatially structured environmental

variables, such as edaphic gradients, may be also repre-

sented by spatial variables (Manel et al. 2010). Climatic

variation and isolation by distance among accessions

may be confounded across the regions with the most

sampling. In northern and western Europe, climate gra-

dients are relatively shallow and strongly spatially auto-

correlated. Accordingly, variance partitioning showed

that a large portion of single nucleotide polymorphism

(SNP) variation explained by climate was also spatially

structured. Mountainous terrain creates sharp climatic

gradients that could disrupt environment-dispersal cor-

relations. However, sampling of Arabidopsis thaliana is

sparse in mountainous regions. Further sampling of

A. thaliana populations located in mountainous regions

would increase our ability to disentangle the drivers of

genomic variation (Beck et al. 2008).

Climate explained very different amounts of SNP var-

iation across regions of the A. thaliana range. SNP vari-

ation in Scandinavia showed the greatest climatic

structure (27% of SNP variation explained by climate).

Scandinavian accessions tend to require vernalization

for flowering, a phenotype associated with winter

annual phenology and other physiological triats (McKay

et al. 2003; Stinchcombe et al. 2004; Atwell et al. 2010).

The relatively consistent life histories of Scandinavian

accessions may result in consistent selective gradients

for any given climatic variable and thus stronger SNP-

climatic associations (Korves et al. 2007; Wilczek et al.

2009) compared with locations in Southern Europe

where both spring and winter annuals are common

(Picó 2012). Additionally, local adaptation may have

been relatively stronger in Scandinavia because acces-

sions farther south in Europe may be homogenized by
� 2012 Blackwell Publishing Ltd
anthropogenic dispersal with large-scale agriculture in

central Europe (Mitchell-Olds & Schmitt 2006). Climate-

genome correlations may also be weaker within other

regional samples owing to sampling effects. Repeatedly

sampling the same populations limits the variation in

climate sampled and increases the share of total genetic

variation found within populations. Scandinavia was

the most extensively sampled region, although in most

regions the strength of climate-SNP correlation was not

clearly related to sampling differences.

Significant enrichment of SNPs in coding regions,

both nonsynonymous (NS) and synonymous (S), for

climatic structure suggests an adaptive basis for a

substantial portion of the observed climate-SNP corre-

lations. NS-SNPs encode phenotypic variation in

amino acid sequences, which may be more likely to

be associated with fitness consequences than intergen-

ic (IG) SNPs that likely have weaker linkage to

protein polymorphism. Accordingly, IG-SNPs had

weaker climatic structure than random SNPs. Both NS

and S-SNPs were likely enriched for climate correla-

tion owing to hitch-hiking (Maynard Smith & Haigh

1974) with nearby (potentially uncharacterized) NS

polymorphisms. While NS-SNPs were strongly

enriched for climate variation, they are not necessarily

the polymorphism under selection. There are many

polymorphisms that were uncharacterized by the

250 k SNP chip and these may underlie locally

adapted genetic variation, but many of these should

be in linkage disequilibrium with nearby SNPs.

Climatic selection on sites linked with nearby NS sites

could increase frequency of even deleterious polymor-

phisms, provided that they are outweighed by fitness

benefit of linked sites.

Unexpectedly, S-SNPs had greater climatic structure

after removing spatial variation than NS-SNPs. There



Table 2 Gene models located within 5 kb of the top 10 single nucleotide polymorphisms (SNPs) having the greatest squared score

on the first redundancy analysis (RDA) axis (RDA on raw SNPs). To remove redundant markers, SNPs were removed from the list

that were within 100 kb of SNPs higher on the list

Chr.

SNP

position

SNP

category Locus Start Stop

RDA

score2 Description (if known)

5 7493047 Synonymous AT5G22555 7489450 7490296 9.3 · 10)5

AT5G22560 7491544 7493097 9.3 · 10)5 Plant protein of unknown function

(DUF247)

AT5G22570 7495608 7496707 9.3 · 10)5 WRKY DNA-binding protein 38

2 10846314 Non-synonymous AT2G25480 10843449 10845343 9.2 · 10)5 TPX2 (targeting protein for Xklp2)

protein family

AT2G25470 10838420 10841881 9.2 · 10)5 Receptor like protein 21

AT2G25490 10848018 10850275 9.2 · 10)5 EIN3-binding F box protein 1

AT2G25482 10845884 10846348 9.2 · 10)5 Protein of unknown function (DUF784)

5 7701756 Intergenic AT5G23000 7696234 7697712 8.6 · 10)5 myb domain protein 37

AT5G23010 7703173 7706769 8.6 · 10)5 methylthioalkylmalate synthase 1

5 6964995 Synonymous AT5G20580 6958790 6962592 8.1 · 10)5

AT5G20590 6963517 6966006 8.1 · 10)5 Trichome birefringence-like 5

AT5G20600 6966345 6967943 8.1 · 10)5

AT5G20610 6969184 6972794 8.1 · 10)5

5 26203511 Synonymous AT5G65570 26203968 26206184 7.8 · 10)5 Tetratricopeptide repeat (TPR)-like

superfamily protein

AT5G65580 26207654 26207962 7.8 · 10)5

AT5G65560 26201012 26203759 7.8 · 10)5 Pentatricopeptide repeat (PPR)

superfamily protein

AT5G65550 26198410 26199810 7.8 · 10)5 UDP-Glycosyltransferase superfamily

protein

5 26885612 Synonymous AT5G67385 26884754 26887083 7.7 · 10)5 Phototropic-responsive NPH3 family

protein

AT5G67380 26881156 26883383 7.7 · 10)5 Casein kinase alpha 1

AT5G67390 26887883 26888512 7.7 · 10)5

2 13361973 Synonymous AT2G31320 13354046 13359578 7.6 · 10)5 poly(ADP-ribose) polymerase 2

AT2G31340 13361614 13364633 7.6 · 10)5 Embryo defective 1381

AT2G31345 13365496 13365708 7.6 · 10)5

AT2G31335 13360985 13361167 7.6 · 10)5

1 6715711 Non-synonymous AT1G19397 6711040 6711336 7.6 · 10)5

AT1G19400 6712222 6713676 7.6 · 10)5 Erythronate-4-phosphate

dehydrogenase family protein

AT1G19410 6714492 6716439 7.6 · 10)5 FBD ⁄ Leucine Rich Repeat domains

containing protein

5 1954643 Unknown AT5G06390 1952939 1955047 7.5 · 10)5 FASCICLIN-like arabinogalactan

protein 17 precursor

AT5G06380 1949632 1950072 7.5 · 10)5

AT5G06400 1955959 1959051 7.5 · 10)5 Pentatricopeptide repeat (PPR)

superfamily protein

2 18279230 Intergenic AT2G44200 18276302 18278240 7.5 · 10)5 CBF1-interacting co-repressor CIR

AT2G44195 18274806 18275539 7.4 · 10)5 CBF1-interacting co-repressor CIR

AT2G44220 18283803 18285690 7.4 · 10)5 Protein of Unknown Function

(DUF239)

AT2G44190 18272346 18274332 7.4 · 10)5 Family of unknown function (DUF566)

AT2G44210 18280809 18282591 7.4 · 10)5 Protein of Unknown Function

(DUF239)

AT2G44198 18276066 18276164 7.4 · 10)5

Coordinates and annotation are from TAIR10 (http://www.arabidopsis.org)
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are at least two possible causes of the higher enrich-

ment of S-SNPs. First, removing spatial structure is an

imperfect method of controlling for population struc-
ture and may have been slightly biased towards remov-

ing spatially structured adaptive variation in linkage

disequilibrium with NS-SNPs. Accounting for spatial
� 2012 Blackwell Publishing Ltd



Table 3 Gene models located within 5 kb of the top 10 single nucleotide polymorphisms (SNPs) having the greatest squared score

on the first partial redundancy analysis (RDA) axis after removing spatial structure effects. To remove redundant markers, SNPs

were removed from the list that were within 100 kb of SNPs higher on the list

Chr.

SNP

position

SNP

category Locus Start Stop

RDA

score2 Description (if known)

5 25986868 Unknown AT5G65060 25987527 25991065 9.7 · 10)5 K-box region and MADS-box transcription

factor family protein

AT5G65050 25982415 25986114 9.7 · 10)5 AGAMOUS-like 31

5 3165299 Intergenic AT5G10120 3169732 3171147 9.0 · 10)5 Ethylene insensitive three family protein

AT5G10110 3166660 3167938 9.0 · 10)5

5 18566945 Unknown AT5G45760 18561121 18563005 8.7 · 10)5 Transducin ⁄ WD40 repeat-like superfamily

protein

AT5G45770 18563568 18564845 8.7 · 10)5 Receptor like protein 55

AT5G45780 18566946 18569625 8.7 · 10)5 Leucine-rich repeat protein kinase family

protein

AT5G45775 18565281 18566496 8.7 · 10)5 Ribosomal L5P family protein

4 12986185 Synonymous AT4G25420 12990982 12992409 7.7 · 10)5 2-oxoglutarate (2OG) and Fe(II)-dependent

oxygenase superfamily protein

AT4G25410 12985772 12987149 7.7 · 10)5 Basic helix-loop-helix (bHLH)

DNA-binding superfamily protein

AT4G25400 12981295 12982335 7.7 · 10)5 Basic helix-loop-helix (bHLH)

DNA-binding superfamily protein

5 16511395 Unknown AT5G41260 16503997 16506970 7.7 · 10)5 Protein kinase protein with tetratricopeptide

repeat domain

AT5G41300 16515004 16516102 7.7 · 10)5 Receptor-like protein kinase-related family

protein

AT5G41280 16509532 16510729 7.7 · 10)5 Receptor-like protein kinase-related family

protein

AT5G41270 16507797 16508813 7.7 · 10)5

AT5G41290 16512326 16513500 7.7 · 10)5 Receptor-like protein kinase-related family

protein

5 16354866 Synonymous AT5G40820 16343860 16353847 7.6 · 10)5 Ataxia telangiectasia-mutated and

RAD3-related

AT5G40830 16354611 16355855 7.6 · 10)5 S-adenosyl-L-methionine-dependent

methyltransferases superfamily protein

AT5G40840 16359611 16363722 7.6 · 10)5 Rad21 ⁄ Rec8-like family protein

5 3615859 Intergenic AT5G11340 3619226 3621068 7.5 · 10)5 Acyl-CoA N-acyltransferases (NAT)

superfamily protein

AT5G11330 3617342 3618861 7.5 · 10)5 FAD ⁄ NAD(P)-binding oxidoreductase

family protein

AT5G11320 3611429 3613361 7.5 · 10)5 Flavin-binding monooxygenase family

protein

5 3046145 Intergenic AT5G09800 3043123 3044352 7.4 · 10)5 ARM repeat superfamily protein

AT5G09805 3047218 3047517 7.4 · 10)5 Inflorescence deficient in abscission

(IDA)-like 3

5 25246808 Unknown AT5G62910 25250830 25252015 7.4 · 10)5 RING ⁄ U-box superfamily protein

AT5G62900 25248872 25249725 7.4 · 10)5

AT5G62890 25243723 25247075 7.4 · 10)5 Xanthine ⁄ uracil permease family protein

5 7663161 Synonymous AT5G22910 7660927 7663829 7.3 · 10)5 Cation ⁄ H+ exchanger 9

AT5G22900 7657224 7659868 7.3 · 10)5 Cation ⁄ H+ exchanger 3

AT5G22920 7665143 7667031 7.3 · 10)5 CHY-type ⁄ CTCHY-type ⁄ RING-type Zinc

finger protein

Coordinates and annotation are from TAIR10 (http://www.arabidopsis.org).
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structure in genetic data is meant to remove effects of

population structure. However, if the climatic gradients

most important in local adaptation and associated with

NS polymorphisms are strongly spatially structured,
� 2012 Blackwell Publishing Ltd
then removing spatial effects may remove a substantial

portion of patterns of local adaptation. Second, environ-

mental gradients might select for changes in cis regula-

tory sequences that are linked with S-SNPs while



Table 4 Gene ontology (GO) terms significantly enriched in

the tail of single nucleotide polymorphisms (SNPs) with great-

est squared SNP scores on the first canonical redundancy anal-

ysis (RDA) axes. Enrichment column gives the proportion of

genes in the tail gene set belonging to the GO term divided by

the proportion of genes in the genome belonging to the GO

term. Only GO terms with false discovery rate (FDR) < 0.05

are shown

Analysis Term Enrichment FDR

RDA

on raw

SNPs

Cell part 1.25 <0.0001

Cell 1.25 <0.0001

Intracellular part 1.34 <0.0001

Intracellular

membrane-bounded

organelle

1.39 <0.0001

Intracellular

organelle

1.37 <0.0001

Membrane-bounded

organelle

1.38 <0.0001

Organelle 1.37 <0.0001

Intracellular 1.32 <0.0001

Cytoplasmic part 1.31 0.0003

Cytoplasm 1.29 0.0003

Response to stimulus 1.48 0.0004

Catalytic activity 1.25 0.0007

Response to organic

substance

1.80 0.0022

Response to chemical

stimulus

1.62 0.0022

Response to

endogenous

stimulus

1.92 0.0022

Cellular process 1.21 0.0024

Binding 1.21 0.0029

Regulation of

biological process

1.43 0.0032

Biological regulation 1.38 0.0051

Membrane 1.32 0.0055

Lipid storage 10.01 0.0074

Response to hormone

stimulus

1.84 0.0081

Cold acclimation 9.01 0.0092

Cellular response to

chemical stimulus

2.28 0.0092

Response to stress 1.50 0.0092

Macromolecule

modification

1.57 0.0120

Mitochondrion 1.61 0.0120

Membrane part 1.58 0.0120

Cellular response to

organic substance

2.28 0.0130

Cellular response to

stimulus

1.85 0.0140

Nucleus 1.40 0.0150

Lipid binding 2.63 0.0160

Transferase activity 1.39 0.0160

Kinase activity 1.57 0.0160

Table 4 Continued

Analysis Term Enrichment FDR

Reproduction 1.68 0.0190

Regulation of

cellular

process

1.37 0.0190

Localization 1.50 0.0190

Regulation of

transcription,

DNA-dependent

1.74 0.0190

Transcription,

DNA-dependent

1.72 0.0190

RNA biosynthetic

process

1.72 0.0190

Regulation of RNA

metabolic process

1.73 0.0200

Intrinsic to

membrane

1.71 0.0210

Multi-organism

process

1.83 0.0230

Lipid localization 2.80 0.0260

RNA metabolic

process

1.53 0.0300

DNA binding 1.40 0.0310

Plastid 1.33 0.0310

Protein modification

process

1.53 0.0370

Cellular metabolic

process

1.19 0.0370

Defense response 1.76 0.0400

Nutrient reservoir

activity

4.63 0.0400

Post-translational

protein modification

1.56 0.0410

Post-embryonic

development

1.62 0.0410

Response to jasmonic

acid stimulus

2.71 0.0410

Cellular response to

endogenous

stimulus

2.23 0.0410

Metabolic process 1.16 0.0460

Response to auxin

stimulus

2.15 0.0470

Partial

RDA after

removing

spatial

effects

Cell part 1.24 <0.0001

Cell 1.24 <0.0001

Intracellular 1.29 <0.0001

Intracellular part 1.29 <0.0001

Cytoplasm 1.32 <0.0001

Intracellular

organelle

1.29 <0.0001

Organelle 1.29 <0.0001

Cytoplasmic part 1.32 <0.0001

Catalytic activity 1.26 <0.0001
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Table 4 Continued

Analysis Term Enrichment FDR

Intracellular

membrane-bounded

organelle

1.28 <0.0001

Membrane-bounded

organelle

1.27 <0.0001

Cytosol 1.88 0.0008

Membrane 1.31 0.0027

Organelle part 1.40 0.0055

Intracellular

organelle part

1.40 0.0055

Biological regulation 1.38 0.0071

Cellular process 1.18 0.0190

Regulation of

biological quality

1.95 0.0190

Nucleus 1.35 0.0290

Plasma membrane 1.43 0.0320

Positive regulation of

metabolic process

3.92 0.0330

Positive regulation of

biosynthetic process

4.21 0.0330

Positive regulation of

cellular biosynthetic

process

4.21 0.0330

Positive regulation of

cellular metabolic

process

3.92 0.0330
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strong, global purifying selection on amino acid

sequences might reduce environmental variation of NS-

SNPs. Jones et al. (2012) found that most environmen-

tally divergent sequence polymorphisms for stickleback

occurred as S-SNPs and at intergenic sites, which they

attributed to selection on regulatory regions. However,

Jones et al. (2012) did not use the null permutation

approach that we adopted from Hancock et al. (2011).

The conclusions of Jones et al. (2012) contrast with

those of Hancock et al. (2011), who found stronger

univariate climate enrichment of NS compared with

S-SNPs. These explanations for our finding are highly

speculative and require further investigation.

The first spatial eigenvector (PCNM) explained the

greatest portion of SNP variation and separated western

Europe from the rest from Eurasia. Our finding is con-

sistent with reports of strong east–west population

structure across Eurasia (Sharbel et al. 2000; Nordborg

et al. 2005; Schmid et al. 2006; Beck et al. 2008; Horton

et al. 2012). The smallest scale PCNM eigenvectors

explained relatively little genomic variation, consistent

with the monotonic isolation by distance in Europe

(Platt et al. 2010). However, Schmid et al. (2006) found

a hump-shaped isolation by distance pattern in central

Asia. The methods we employed could model

hump-shaped isolation by distance, but the monotonic
� 2012 Blackwell Publishing Ltd
range-wide pattern we observed was probably domi-

nated by heavily sampled Europe.

Early spring and winter temperatures explained the

greatest portion of SNP variation among all accessions.

Recent experimental evidence suggests that low tem-

perature represents a significant selective gradient

(Ågren & Schemske 2012). Accession freezing tolerance

is correlated with local cold extremes (Hannah et al.

2006). Hoffmann (2002) found that mean April temper-

ature best explained the northern range limit of

A. thaliana, which was nearly congruent with the

0.1 �C isotherm, whereas April maximum temperature

explained the most SNP variation in our analysis.

Winter minimum temperature was the climate variable

explaining the most genetic variation of the confamil-

ial Arabis alpina (Manel et al. 2010). Additionally, Four-

nier-Level et al. (2011) found that SNP alleles

associated with locally increased survival appeared to

be particularly limited by temperature variables. How-

ever, much of early spring temperature variability

occurs along a continental-coastal axis that may be an

axis of population structure in A. thaliana (Nordborg

et al. 2005).

We attempted to control for population structure by

removing spatial structure via partial regression (Urban

2011) and found that minimum growing season temper-

atures and summer precipitation explained the most

genomic variation. Variation in climate conditions dur-

ing growing periods may represent critical selective gra-

dients because annual plants do not avoid stress via

dormancy at this time. We conclude that our predicted

growing season minimum temperatures and precipita-

tion are likely selective gradients driving local adapta-

tion in A. thaliana. We used our results to generate

hypotheses about selective pressures and the role of

local adaptation and population structure in A. thaliana.

In situ common garden experiments could assess the

role of the April temperature and conditions during

predicted growing seasons in fitness variation and local

adaptation.

Three-quarters of SNP variation among all accessions

remained unexplained. Variation unexplained by RDA

may be attributed to many factors: (i) variation in mech-

anisms of adaptation (e.g. convergence), (ii) variation in

life history, (iii) environmental variation occurring at

scales smaller than our data, (iv) nonlinear climate-

genetic relationships, (v) unmeasured selective gradi-

ents with little spatial structure, (vi) balancing selection,

mutation, drift and other processes that maintain local

diversity, (vii) population structure unexplained by spa-

tial relationships and (viii) recent human-assisted dis-

persal that has altered spatial genomic variation from

environmental selective regimes. Biplots of RDA canoni-

cal axes revealed that there were nonlinear correlations
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between SNPs and climate in some cases (e.g. Fig. S12,

Supporting Information), although we did not include

nonlinear terms because of the high number of climate

variables. Additional tools that model complex multi-

variate relationships will be vital for addressing this

important issue in the future.

Our identification of outlier loci associated with

RDA axes complements recent genome-wide associa-

tion studies for climate in A. thaliana. Hancock et al.

(2011) demonstrated enrichment of nonsynonymous

SNPs for associations with climate variables and

enrichment of certain functional processes in climate

associated SNPs. Fournier-Level et al. (2011) found that

SNP alleles associated with fitness variation across

environments tended to have nonrandom distributions

relative to climate. Our outlier analysis adds to these

studies by identifying loci correlated with linear com-

binations of climatic gradients, whereas Hancock et al.

(2011) studied single climatic variable-SNP correlations.

Additionally, the loci we identified were representative

of multi-loci associations with multi-variate climate

gradients, which may represent local adaptation across

many loci of small effect or substantial hitch-hiking

(Hill & Robertson 1966).

Changes in gene expression may underlie much of

local adaptation (Hodgins-Davis & Townsend 2009; Des

Marais & Juenger 2010; Juenger et al. 2010; Des Marais

et al. 2012). Genes involved in the transcription regula-

tion were significantly enriched in the tail of SNPs hav-

ing strong RDA associations to climate (Table 4).

Transcription factors were at the top of outlier analyses

(RDA and partial RDA). A SNP near WRKY38 had the

strongest association to the first multivariate RDA axis.

WRKY38 is known to play a role in defence against

pathogens in A. thaliana (Kim et al. 2008) and cold and

drought response in barley (Marè et al. 2004). After

removing spatial structure effects via partial RDA, a

SNP in the MAF2-5 (MADS-box affects flowering) clus-

ter of transcription factors had the strongest association

to the first multi-variate climate axis. MAF2-5 is similar

to the floral regulator FLC and has highly polymorphic

sequence and transcription that affect flowering time

(Caicedo et al. 2009), a trait that is associated with

response to abiotic stress (McKay et al. 2003, Korves

et al. 2007).

Enrichment of GO terms for gene function in the tail

of SNP RDA scores may indicate that RDA modelled

patterns of local adaptation. Many of the terms with

the most significant enrichment were responses to

environmental stimuli and stress; these genes may be

under divergent selection along the environmental gra-

dients modelled by RDA. However, after controlling

for spatial structure, SNPs in the tail of strong associa-

tion to climate were relatively weakly enriched for GO
terms. Controlling for spatial structure may have

removed a large portion of genomic variation associ-

ated with local adaptation to spatially autocorrelated

selective gradients.

Redundancy analysis (RDA) and related multivariate

methods can be powerful tools for ecological genomics,

although they have only recently been used in this con-

text (Manel et al. 2010; Sork et al. 2010; Lee & Mitchell-

Olds 2011; Salathé & Schmid-Hempel 2011). We have

demonstrated how RDA, variance partitioning and

PCNM can be used to determine correlations between

various factors affecting genomic variation. Eigenanaly-

ses such as RDA allow one to simplify the system by

decomposing SNP, climate and spatial variables into

orthogonal axes. These tools have allowed us to address

a largely overlooked issue: the importance of different

climate and spatial variables in explaining total genomic

variation (c.f. Manel et al. 2010; Sork et al. 2010; Lee &

Mitchell-Olds 2011 for fewer loci and Montesinos-

Navarro et al. 2011; Urban 2011 for phenotype-environ-

ment correlations).

Large spatial gradients and winter, spring and grow-

ing season temperatures explained the greatest portion

of SNP variation in A. thaliana. These patterns are likely

due to both population structure and local adaptation

to climate. Enrichment of climatic structure with SNPs

that coded phenotypic variation for amino acid substi-

tutions suggests fitness consequences and local adapta-

tion are partly the source of observed correlations.
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