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Abstract

Characterizing spatial patterns in allele frequencies is fundamental to 
evolutionary biology because these patterns contain evidence of underly-
ing processes. However, the spatial scales at which gene flow, changing 
selection, and drift act are often unknown. Many of these processes can 
operate inconsistently across space, causing non-stationary patterns. We 
present a wavelet approach to characterize spatial pattern in allele fre-
quency that helps solve these problems. We show how our approach can 
characterize spatial patterns in relatedness at multiple spatial scales, i.e. 
a multi-locus wavelet genetic dissimilarity. We also develop wavelet tests 
of spatial di↵erentiation in allele frequency and quantitative trait loci 
(QTL). With simulation we illustrate these methods under di↵erent sce-
narios. We also apply our approach to natural populations of Arabidopsis 
thaliana to characterize population structure and identify locally-adapted 
loci across scales. We find, for example, that Arabidopsis flowering time 
QTL show significantly elevated genetic di↵erentiation at 300 to 1300 km 
scales. Wavelet transforms of allele frequencies o↵er a flexible way to 
reveal geographic patterns and underlying evolutionary processes.
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1 Introduction1

Geographic clines in allele frequency are a classic pattern in evolutionary bi-2

ology, being frequently observed in nature and having extensive theory for the3

underlying processes. For example, theory describes how limited gene flow and4

drift (Wright 1931) or changing selection (Haldane 1948) can generate allele fre-5

quency di↵erences between populations. Accordingly, researchers often estimate6

and model spatial allele frequency patterns to make inferences about underly-7

ing evolutionary and ecological mechanisms. To do so, researchers often divide8

sampled individuals into discrete groups (populations) among which di↵erences9

in allele frequencies are calculated. A common such approach involves estimat-10

ing FST , the proportion of total allele frequency variation that di↵ers between11

discrete populations (Lewontin and Krakauer 1973; Wright 1949).12

However, many species exist as more or less continuously distributed pop-13

ulations. Theoretical study of allele frequency change across continuous popu-14

lations began as early as Wright (1943) and Malécot (1948), who found expec-15

tations for genetic di↵erentiation or kinship as functions of gene flow and geo-16

graphic distance. Later progress included di↵usion models (Nagylaki 1978) and17

stepping stone/lattice models (Kimura and Weiss 1964) giving expectations for18

correlation in allele frequencies across distance, and models accounting for pop-19

ulation regulation by negative density dependence (Nick H. Barton, Depaulis,20

and Etheridge 2002).21

Despite these theoretical advances, the statistical tools for inference on con-22

tinuously distributed populations have lagged (Bradburd and Peter L. Ralph23

2019; Hancock, Toczydlowski, and Bradburd 2023). Nevertheless, statistical ap-24

proaches to studying spatial pattern in continuous populations include models25

relating landscape features to gene flow (McRae et al. 2008), calculating cor-26

relations between spatial functions and genotype (Wagner, Chávez-Pesqueira,27

and Forester 2017; Yang et al. 2012), and applying discrete landscape grids to28

identify geographic regions where genetic turnover is particularly high or low29

(Petkova, Novembre, and Stephens 2016). Approaches have been developed30

to estimate the average distance of gene flow from the slope of genetic diver-31

gence versus geographic distance (Rousset 2000; X. Vekemans and O. J. Hardy32

2004), to estimate localized genetic ”neighborhoods” (Shirk and Cushman 2014;33

Wright 1946), and to model both discrete and continuous relatedness patterns34

simultaneously (Bradburd, G. M. Coop, and Peter L. Ralph 2018).35

In recent years researchers have collected many large, broadly distributed36

DNA sequence datasets from diverse species (Alonso-Blanco et al. 2016; Machado37

et al. 2021; J. Wang et al. 2020; Yeaman et al. 2016). Statistical inference can38

be applied to these data to understand gene flow, demographic histories, and39

spatially-varying selection. Despite the progress made by previous approaches,40

there remain challenges.41
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1.1 The form and scale of relevant spatial patterns is un-42

known43

Humans can infer seemingly meaningful patterns in even randomly generated44

images (Ayton and Fischer 2004; Blakemore et al. 2003; Fyfe et al. 2008). So45

what are the spatial patterns we are looking for? The functional forms (i.e.46

shapes) of both spatially-varying selection and neutral processes (e.g. dispersal47

kernels) are often unknown, as are the forms of resulting spatial patterns. For48

example, the specific environmental gradients driving changing selection are49

often not known, nor is the spatial scale at which they act, and whether they50

change at the same rate consistently across a landscape.51

In the case of neutral processes, a homogeneous landscape approximately52

at equilibrium is rarely of interest to empiricists. Instead, the influence of het-53

erogeneous landscapes (Manel et al. 2003) and historical contingency is usually54

a major force behind spatial patterns in allele frequency and traits (Exco�er55

and Ray 2008). As a result, researchers often attempt to characterize spatial56

patterns of relatedness and genetic similarity to make inferences about varia-57

tion in gene flow (McRae et al. 2008; Peterman 2018; I. J. Wang, Savage, and58

Bradley Sha↵er 2009) and recent population expansion (Slatkin 1993). The in-59

fluence of gene flow, drift, and range expansion can occur at a variety of spatial60

scales, and in di↵erent ways across a heterogenous landscape. For example, the61

rate at which relatedness decays over geographic distance can change abruptly62

at major barriers (Rosenberg et al. 2005). However, the scale-specificity and63

non-stationarity of such patterns can be challenging to characterize.64

1.2 The spatially-varying selective gradients causing local65

adaptation are unknown66

One important force behind allele frequency clines is changing selection due67

to environmental gradients, resulting in local adaptation. However, it is often68

not clear what environmental gradients drive local adaptation (Kawecki and69

Ebert 2004). This is especially true of non-model systems and those with little70

existing natural history knowledge. Even for well-studied species, it is not trivial71

to identify the specific environmental conditions that change in space and drive72

local adaptation. Ecology is complex, and abiotic and biotic conditions are high-73

dimensional. Rather than a priori selection of a putative selective gradient,74

an alternative approach is to search for spatial patterns in allele frequencies75

that cannot be explained by neutral processes. This approach is embodied76

by several statistics and approaches, such as FST (Weir and Cockerham 1984),77

XtX (Gautier 2015), spatial ancestry analysis (SPA) (Yang et al. 2012), Moran’s78

eigenvector maps (MEMs) (Wagner, Chávez-Pesqueira, and Forester 2017), and79

others.80
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1.3 Many approaches rely on discretization of population81

boundaries82

Some of the aforementioned approaches rely on dividing sampled individuals83

into discrete spatial groups. FST is one such approach, that was introduced by84

Wright (1949) and defined as the ”correlation between random gametes, drawn85

from the same subpopulation, relative to the total”, where the definition of ”to-86

tal” has been interpreted di↵erently by di↵erent authors (Bhatia et al. 2013).87

The classic approach of calculating FST to test for selection was usually applied88

to a small number of locations, a situation when discretization (i.e. deciding89

which individuals genotyped belong in which population) was a simpler prob-90

lem. Current studies often sample and sequence individuals from hundreds of91

locations, and so the best approach for discretizing these genotyped individ-92

uals into defined ’populations’ is less clear. In addition to the spatial scale of93

subpopulations, at issue is precisely where to place the boundaries between pop-94

ulations. The problem is enhanced for broadly distributed species, connected by95

gene flow, that lack clear spatially distinct populations (Emily B. Josephs et al.96

2019). Even if clustering algorithms appear to show clustering of genotypes,97

these methods can be sensitive to sampling bias (e.g. geographic clustering)98

and can mislead as to the existence of discrete subpopulations (Frantz et al.99

2009; Serre and Pääbo 2004).100

Some approaches are not limited by discretization, and might be gener-101

ally termed ”population-agnostic” because discrete populations are not defined.102

These instead use ordination of genetic loci or geographic location. Approaches103

that use ordination (such as PCA) of genetic loci look for particular loci with104

strong loadings on PCs (Duforet-Frebourg et al. 2016) or traits with an unex-105

pectedly high correlation with individual PCs (Emily B. Josephs et al. 2019).106

Alternatively, ordination of distance or spatial neighborhood matrices can create107

spatial functions that can be used in correlation tests with genetic loci (Wagner,108

Chávez-Pesqueira, and Forester 2017). However, ordinations to create individ-109

ual rotated axes are not done with respect to biology and so might not be ideal110

for characterizing biological patterns. For example, ordinations of genetic loci111

are heavily influenced by global outliers of genetic divergence (Peter, Petkova,112

and Novembre 2020) and uneven sampling (McVean 2009). Ordinations like113

PCA also often lack parametric null distributions for hypothesis testing.114

1.4 Wavelet characterization of spatial pattern115

Instead of discretizing sampled locations into populations, one could model allele116

frequencies with flexible but smooth functions. Wavelet transforms allow one117

to characterize the location and the scale or frequency of a signal (Daubechies118

1992). Daubechies (1992) gives a nice analogy of wavelet transforms: they119

are akin to written music, which indicates a signal of a particular frequency120

(musical notes of di↵erent pitch) at a particular location (the time at which121

the note is played, in the case of music). Applying this analogy to genetics, the122

frequency is the rate at which allele frequencies change in space, and the location123
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is the part of a landscape where allele frequencies change at this rate. Applying124

wavelet basis functions to spatial genetic data could allow us to characterize125

localized patterns in allele frequency, and dilating the scale of these functions126

could allow us to characterize scale-specific patterns in allele frequency (see127

Figure S1 in File S1 for an example). Note that wavelets are distinct from128

Fourier analysis. Wavelets capture localized signals because the basis functions’129

variance goes to zero moving away from the focal location, while Fourier can130

only capture global average patterns as it uses stationary (unchanging) basis131

functions. Wavelet transforms have had some recent applications in modeling132

ancestry along the genome (Groh and G. Coop 2023; Pugach et al. 2011) but133

have not been implemented to model geographic genetic patterns.134

Keitt (2007) created a wavelet approach for characterizing spatial patterns135

in ecological communities. He used this approach to identify locations and scales136

with particular high community turnover, and created null-hypothesis testing of137

these patterns. These spatial patterns in the abundance of multiple species are138

closely analogous to spatial patterns in allele frequency of many genetic markers139

across the genome, and previous spatial genetic studies have also profited by140

borrowing tools from spatial community ecology (Fitzpatrick and Keller 2015;141

Jesse R. Lasky, Des Marais, et al. 2012). Here we modify and build on this142

approach to characterize spatial pattern in allele frequency across the genome143

and at individual loci.144

2 Methods145

2.1 Wavelet characterization of spatial pattern in allele146

frequency147

Our implementation here begins by following the work of Keitt (2007) in char-148

acterizing spatial community turnover, except that we characterize genomic149

patterns using allele frequencies of multiple loci in place of abundances of mul-150

tiple species in ecological communities. In later sections of this paper we build151

o↵ this approach and develop new tests for selection on specific loci. Our im-152

plementation of wavelets allows estimation of scale-specific signals (here, allele153

frequency clines) centered on a given point, a, b, in two-dimensional space. We154

use a version of the Di↵erence-of-Gaussians (DoG) wavelet function (Figure S1155

in File S1) (Muraki 1995). We start with a Gaussian smoothing function cen-156

tered at a, b for a set of sampling points ⌦ = {(u1, v1), (u2, v2), . . . (un, vn)},157

which takes the form158

⌘sa,b(x, y) =
k(x�a

s , y�b
s )

P
(u,v)2⌦ k(u�a

s , v�b
s )

, (1)

where s controls the scale of analysis and k(x, y) is the Gaussian kernel159

k(x, y) = e�(x2+y2)/2.160

The DoG wavelet function then takes the form161
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s
a,b(x, y) = ⌘sa,b(x, y)� ⌘�sa,b(x, y) (2)

where � > 1, and so the larger scale smooth function is subtracted from162

the smaller scale smooth to characterize the scale-specific pattern. If we use163

� = 1.87, then the dominant scale of analysis resulting from the DoG is s164

distance units (Keitt 2007). This formulation of the wavelet kernel is similar in165

shape to the derivative-of-Gaussian kernel and has the advantage of maintaining166

admissibility (Daubechies 1992) even near boundaries, as each of the smoothing167

kernels ⌘sa,b are normalized over the samples such that their di↵erence integrates168

to zero.169

Let fi(u, v) be the major allele frequency of the ith locus from a set of170

I biallelic markers at a location with spatial coordinates u, v. The adaptive171

wavelet transform of allele frequency data at locus i, centered at a, b and at172

scale s is then173

(Twavfi)(a, b, s) =
1

ha,b(s)

X

(u,v)2⌦

 s
a,b(u, v)fi(u, v), (3)

where the right summation is of the product of the smooth function and174

the allele frequencies across locations. The magnitude of this summation will175

be greatest when the DoG wavelet filter matches the allele frequency cline.176

That is, when the shape of the wavelet filter matches the allele frequency cline177

in space, the product of  s
a,b(u, v) and fi(u, v) will resonate (increase in ampli-178

tude) yielding greater variation among locations in (Twavfi)(a, b, s), the wavelet-179

transformed allele frequencies. When the spatial pattern in the wavelet filter180

and allele frequencies are discordant, the variation in their product, and hence181

the wavelet-transformed allele frequency, is reduced. For consistency, here we182

choose major allele frequency for fi(u, v), though in practice the signing of alleles183

has little impact on our results.184

The ha,b(s) term in equation 3 is used to normalize the variation in the185

wavelet function so that the wavelet transforms Twavfi are comparable for dif-186

ferent scales s and locations a, b:187

ha,b(s) =
s X

(u,v)2⌦

[ s
a,b(u, v)]

2 (4)

. When a, b is far from locations in ⌦ relative to the scale s, the Gaussian188

functions [⌘sa,b(x, y)] that make up the wavelet function  are only evaluated189

over a range where they remain close to zero. Thus unsampled geographic190

regions will have very small ha,b(s), the term used to normalize for local variation191

in the wavelet basis functions. In turn, very small ha,b(s) dramatically and192

undesirably inflates the wavelet transformed allele frequencies (equation 3) in193

these geographic regions where there is little sampling relative to s. For this194

reason we do not calculate the wavelet transform for locations a, b where there195

are no locations sampled closer than 2s distance units.196
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Below we illustrate how to apply this wavelet transform (equation 3) of197

spatial allele frequency patterns to characterize genome-wide patterns, as well198

as to test for local adaption at individual loci.199

2.1.1 Wavelet characterization of spatial pattern in multiple loci200

Researchers are often interested in characterizing spatial patterns aggregated201

across multiple loci across the genome to understand patterns of relatedness,202

population structure, and demographic history. Here, we specifically want to203

characterize heterogeneity in spatial patterns, because this heterogeneity in pat-204

tern may reflect heterogeneity in underlying processes: where there is hetero-205

geneity in migration rates, such as where there are migration barriers (Petkova,206

Novembre, and Stephens 2016), or where there are recent range expansions such207

that spatial patterns are farther from equilibrium (Slatkin 1993).208

We use209

Dwav
a,b (s) =

vuut
IX

i=1

[(Twavfi)(a, b, s)]2 (5)

to calculate a ”wavelet genetic distance” or ”wavelet genetic dissimilarity.”210

This wavelet genetic dissimilarity is computed as the euclidean distance (in the211

space of allele frequencies across the genome) between the genetic composition212

centered at a, b and other locations across s distance units. This wavelet genetic213

dissimilarity Dwav
a,b (s) is localized in space and scale-specific. This quantity cap-214

tures the level of genetic turnover at scale s centered at a, b, and is capturing215

similar information as the increase in average genetic distance between a geno-216

type at a, b and other genotypes s distance units away. To obtain the average217

dissimilarity across the landscape, one can also calculate the mean of Dwav
a,b (s)218

across locations a, b at each sampled site, to get a mean wavelet genetic dissim-219

ilarity for s. A benefit of using the wavelet transformation over sliding window220

approaches (e.g. Bishop, Chambers, and I. J. Wang 2023) is that wavelets221

smoothly incorporate patterns from samples that are not precisely s distance222

units away and can be centered at any location of the analyst’s choosing.223

2.1.2 Testing the null hypothesis of no spatial pattern in allele fre-224

quency225

A null hypothesis of no spatial pattern in allele frequencies can be generated226

by permuting the location of sampled populations among each other. Most227

empirical systems are not panmictic, and so this null model is trivial in a sense.228

However, comparison with this null across scales and locations can reveal when229

systems shift from small-scale homogeneity (from local gene flow) to larger scale230

heterogeneity (from limited gene flow) (Keitt 2007).231
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2.1.3 Simulated neutral patterns across a continuous landscape232

To demonstrate the wavelet transformation of allele frequencies, and wavelet233

genetic dissimilarity function, we applied these tools to several simulated sce-234

narios. First, we conducted forward landscape genetic simulations under neu-235

trality using the SLiM software (Haller and Messer 2019), building o↵ published236

approaches (C J Battey, Peter L Ralph, and Kern 2020). We simulated out-237

crossing, iteroparous, hermaphroditic organisms, with modest lifespans (aver-238

age of ⇠ 4 time steps). Individual fecundity was Poisson distributed, mating239

probability (determining paternity) was determined based on a Gaussian kernel240

(truncated at three standard deviations), and dispersal distance from mother241

was also Gaussian (C. Battey, Peter L Ralph, and Kern 2020). Individuals242

became mature in the time step following their dispersal. These parameters243

roughly approximate a short lived perennial plant with gene flow via pollen244

movement and seed dispersal. Competition reduced survival and decayed with245

distance following a Gaussian (truncated at three standard deviations, C J Bat-246

tey, Peter L Ralph, and Kern 2020). Near landscape boundaries, survival was247

reduced to compensate for lower competition from beyond the landscape mar-248

gin (C J Battey, Peter L Ralph, and Kern 2020). Code is available at GitHub249

(https://github.com/jesserlasky/WaveletSpatialGenetic).250

We began by characterizing a simple scenario across a continuous land-251

scape. We simulated a square two dimensional landscape measuring 25 units252

on each side. The standard deviation of mating and dispersal distance � were253

both 0.2, yielding a combined standard deviation of gene flow distances of 0.24254

[(3�2/2)1/2]. In this first simulation there was no selection. The population was255

allowed to evolve for 100,000 time steps before we randomly sampled 200 indi-256

viduals and 1,000 SNPs with a minor allele frequency of at least 0.05. The first257

two principal components (PCs) of these SNPs show smooth population struc-258

ture across the landscape, and that these two PCs predict the spatial location259

of each sample (Figure S2 in File S1).260

To facilitate interpretation of wavelet transformed allele frequencies261

(Twavfi)(a, b, s) we provide two example loci i with distinct spatial patterns262

(Figure 1). The first locus has the greatest variance in wavelet transformed263

allele frequencies among sampled loci at s = 0.4 (Figure 1A-C) while the second264

locus has the greatest variance at s = 12.2 (Figure 1D-F).265

We then calculated wavelet dissimilarity Dwav
a,b (s), aggregating the signals266

in (Twavfi)(a, b, s) across loci i, for each sampled location at a range of spatial267

scales s. Here and below we use a set of scales increasing by a constant log dis-268

tance interval, as genetic distances are often linearly correlated to log geographic269

distances in two dimensions (F. Rousset 1997). The mean across sampled lo-270

cations for each scale was calculated and compared to the null distribution for271

that scale (Figure S2 in File S1). The null was generated by permuting locations272

of sampled individuals as described above, and observed mean of dissimilarity273

was considered significant if it was below the 2.5 percentile or above the 97.5274

percentile of dissimilarity from null permutations.275

When comparing our simulated data to the null, we found that mean wavelet276
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Figure 1: Two example SNPs (rows) with distinct spatial patterns.
Shading shows either allelic variation (untransformed, A, D) or variation in
wavelet transformed allele frequencies (Twavfi)(a, b, s) (B,C,E,F). The first locus
(A-C) has the greatest variance in wavelet transformed allele frequency among
sampled loci at s = 0.4. The second locus (D-F) has the greatest variance in
wavelet transformed allele frequency at s = 12.2. For the SNP in the top row,
the variance among locations in (Twavfi)(a, b, s) for s = 0.4 is 0.56 (visualized
as shading in B), while it is only 0.17 for the SNP in the bottom row (E). For
the SNP in the bottom row, the variance among locations in (Twavfi)(a, b, s)
for s = 12.2 is 44.46 (visualized as shading in F), while it is only 1.24 for the
SNP in the top row (C).
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genetic dissimilarity was significantly less than expected under the null model277

at scales s  0.93, due to local homogenization by gene flow (standard deviation278

= 0.24). At scales s � 1.24, wavelet dissimilarity was significantly greater than279

expected, due to isolation by distance, with monotonically increasing wavelet280

genetic dissimilarity at greater scales (Figure S2 in File S1).281

To demonstrate how the scale of gene flow influences the wavelet dissimilarity282

Dwav
a,b (s), we also conducted identical simulations as described above but instead283

with standard deviations of mating and dispersal distances, �, of 0.5, 1, 2, or 5,284

yielding combined standard deviations of gene flow distances of 0.61, 1.22, 2.45,285

and 6.12.286

To verify that simulations were generating results consistent with theoretical287

expectations of continuous populations at equilibrium, we compared the sim-288

ulated gene flow parameters with estimations from the simulated data based289

on theory. The slope of genetic di↵erentiation versus geographic distance in290

two dimensions is expected to be proportional to the inverse of Wright’s neigh-291

borhood size, 4⇡D�2, where D is the e↵ective population density and � is the292

standard deviation of gene flow (Rousset 2000; X. Vekemans and O. J. Hardy293

2004; Wright 1943, 1946).294

We estimated D using Ne = (4N �2)/(V +2) where N is census population295

size and V is variance in lifetime reproductive output (Kimura and Crow 1963).296

We calculated V using the lifetime reproductive output of the individuals dying297

in the last 50 time steps. We then divided the estimated Ne by landscape298

area (assuming evenly distribution across the landscape) to get e↵ective density299

D (X. Vekemans and O. J. Hardy 2004). We used three di↵erent genetic300

di↵erentiation or kinship metrics (Loiselle et al. 1995; Ritland 1996; Rousset301

2000) combined with estimated D to estimate gene flow across a range of true302

gene flow parameters (using SPAGeDi v1.5 software, Olivier J. Hardy and Xavier303

Vekemans (2002)). We also compared individual pairwise estimates of genetic304

di↵erentiation across distance with the theoretically expected slope. Simulations305

were run for 100,000 time steps with parameters as described above.306

We found that the gene flow estimated using the slope of genetic versus307

geographic distance and D was closely matched by the simulation parameter308

value, especially for the Rousset (2000) genetic di↵erentiation estimator (Figures309

S3 and S4 in File S1). This matching suggests these simulations corresponded310

well with theory for continuous populations at equilibrium, despite ignoring the311

e↵ects of negative density dependence, uneven distribution of individuals, and312

boundary e↵ects (Nick H. Barton, Depaulis, and Etheridge 2002).313

With increasing scale of gene flow we see a flatter change in wavelet dis-314

similarity across spatial scales (Figure S5 in File S1). When gene flow is local,315

wavelet dissimilarity is low at small scales and high at large scales. At the large316

gene flow scale, the observed wavelet dissimilarity is indistinguishable from the317

panmictic null. We also ran the same analyses but using biased sampling along318

the landscape’s y-axis, so that 3/4 of samples were in the upper half of the land-319

scape. Even with this bias, the wavelet dissimilarities across scales and gene flow320

parameters were essentially unchanged (Figure S6 in File S1). To investigate321

sensitivity to landscape size, we also ran these same simulations with landscapes322
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four times as large (50x50) and found similar patterns of wavelet dissimilarity323

across scales and simulated gene flows (Figure S7 in File S1).324

3 Results325

3.0.1 Simulated long-term neutral patterns in a heterogeneous land-326

scape327

To assess if our approach could identify localized and scale-specific patterns of328

isolation by distance, we next simulated multiple scenarios where we expected329

spatial heterogeneity. First, we simulated neutral evolution across a simulated330

patchy landscape (generated from earlier work) (Jesse R. Lasky and Keitt 2013).331

This landscape contained a substantial portion of unsuitable habitat where ar-332

riving propagules perished. We used the same population parameters as previ-333

ously and simulated 100,000 time steps to reach approximately stable relatedness334

patterns. We then calculated wavelet dissimilarity using 1,000 random SNPs of335

200 sampled individuals.336

Additionally, we sought to compare wavelet dissimilarities to more familiar337

metrics. To do so, we calculated euclidean genetic distance (in the space of338

allele frequencies across the genome) and geographic distance between pairs339

of samples, and did this for di↵erent subsets of samples and regions, so as340

to compare localized patterns in wavelet dissimilarity to localized patterns in341

pairwise distances.342

In our landscape, wavelet dissimilarity showed localized and scale-specific343

patterns of low and high dissimilarity (Figure 2). Notably, the same two islands344

(top left and bottom right of landscape in Figure 2) have lower dissimilarity345

than expected at small scales and are more dissimilar than expected at larger346

scales. Stated another way, these islands have low diversity locally (e.g. within347

populations), as can be seen by the slow increase in genetic distance with geo-348

graphic distance locally (Figure 2D, compare to 2F). However, at larger scales349

(e.g. comparing island to mainland) islands are more dissimilar, as seen by the350

greater genetic distances at larger geographic distances (Figure 2E, compare to351

2G; also see the first two principal components of SNPs, Figure S8 in File S1).352

These results highlight the capacity of the method to contrast patterns across353

scales requiring only dilation of the analyzing kernel.354

3.0.2 Simulated neutral patterns in a colonizing and range-355

expanding species356

For a second scenario where we expected localized, scale-specific heterogeneity,357

we simulated an invasion/range expansion. Beyond the importance of invasions358

in applied biology, the changes in spatial genetic patterns over time are of general359

interest (Castric and Bernatchez 2003; Le Corre et al. 1997; Slatkin 1991, 1993),360

considering that all species ranges are dynamic and many ”native” species still361

bear clear evidence of expansion, e.g. following the last glacial maximum.362
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Figure 2: Wavelet genetic dissimilarity identifies scale-specific, local-
ized patterns in a heterogeneous landscape, with pairwise distance
plots for comparison. (A-C) Maps of simulated landscape where habitat is
gray (in background) and unsuitable areas are white. Sampled individuals are
circles. Colors represent sampling locations where wavelet genetic dissimilarity
was significantly high (red) or low (blue), with s, the wavelet scale, shown at
top of each panel as a horizontal line. At the smallest scales (A), samples have
less dissimilarity than expected, especially in the island in the upper left of the
landscape. This pattern can also be seen (D,F) when comparing pairwise geo-
graphic versus euclidean genetic distances for samples in the di↵erent regions of
the landscape (dashed grey lines in A). At larger spatial scales (B-C), all loca-
tions have significantly greater dissimilarity than expected due to limited gene
flow. However, the same islands show the greatest dissimilarity at large scales
(lower panels), due to their high genetic di↵erence from mainland samples at
center. This pattern can also be seen in the pairwise genetic distances across
larger geographic distances (E,G). (D-G) Loess smoothing curves are shown.
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We simulated invasion across a square landscape of the same size as before,363

but beginning with identical individuals only in the middle at the bottom edge364

of the landscape (Figure 3). We sampled 200 individuals at time steps 100, 250,365

500, 1000, 1500, 2000, through the full populating of the landscape around 2500366

years and until the 3000th time step.367

We characterized wavelet genetic dissimilarity and found substantial hetero-368

geneity across di↵erent regions and across time (e.g. for s = 6.9, dark versus369

light red in Figure 3A-C). This heterogeneity in genetic turnover can be seen by370

contrasting genotypes from di↵erent regions. Near the expansion front, there371

is relative homogeneity and low diversity locally in new populations, but with372

rapid turnover in genotypes separated by space, resulting in high wavelet dis-373

similarity at intermediate spatial scales (Figure 3D). In the range interior, there374

is greater local diversity and less turnover in genotype across space, i.e. a weaker375

isolation by distance (Figure 3E, see all SNP genetic distance plot Figure S9 in376

File S1). Supporting the role of founder e↵ects and low diversity at expanding377

range margins in driving these patterns, we observed a decline in medium- and378

large-scale wavelet dissimilarity in later years (Figure 3G) after the landscape379

had been populated.380

These patterns highlight how wavelet dissimilarity is capturing scale-specific381

turnover in genetic composition, rather than merely genetic distance at a given382

geographic distance. Comparing the two regions highlighted in Figure 3B, the383

genetic distances at a geographic distance of 6.9 are not strikingly di↵erent384

(Figure S9 in File S1). Rather what distinguishes these regions is their rate385

of genetic change in composition at this scale, as highlighted in Figure 3. The386

region of high wavelet dissimilarity at s = 6.9 (Figure 3B) transitions from387

homogeneity among nearby samples to high genetic distance at larger scales388

(Figure 3D, S9). By contrast the region of low wavelet dissimilarity at s = 6.9389

(Figure 3B) starts out with greater genetic distance among nearby samples with390

a modest increase in genetic distance at larger scales (Figure 3E, S9).391

Overall, these simulations show the capacity of Dwav
a,b (s), wavelet genetic392

dissimilarity, to capture localized, scale specific trends in genetic composition.393

Given the spatial heterogeneity in nature and the dynamics of populations and394

species ranges through time, there are likely many such patterns waiting to be395

described to shed light on patterns of gene flow and population history.396

3.1 Finding the loci of local adaptation397

3.1.1 Using wavelet transforms to identify outliers of spatial pattern398

in allele frequency399

We can also use our approach to transforming allele frequencies to identify par-400

ticular genetic loci involved in local adaptation, and the regions and spatial401

scales of turnover in their allele frequency. Our strategy is (as before) to first402

calculate (Twavfi)(a, b, s), the wavelet transform, for each locus i at each sam-403

pling point a, b for a set of chosen spatial scales s 2 S.404

Because of di↵erent ages and histories of drift, mutations will vary in their405
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Figure 3: Wavelet genetic dissimilarity reveals dynamic spatial pat-
terns during an invasion across a homogeneous landscape. Left column
of panels (A-C) shows a map of the landscape through time, with 200 sampled
individuals at each time step and the wavelet dissimilarity at s = 6.9 at their
location. Darker red indicates greater wavelet dissimilarity. In the second time
step, 1000, two regions are highlighted in dashed boxes (B), one with higher
dissimilarity at s = 6.9 (D) and one with lower dissimilarity at this scale (E).
(D-E) show pairwise geographic distance versus distance in the first PC of SNPs
for samples from these regions. (F) shows the loadings of each sample on the
first PC of SNPs. (D-E) highlight the greater increase in PC1 distance with
geographic distance at this scale (vertical dashed lines) in (D), compared to the
smaller increase in PC1 distance at this scale in (E). In particular, the region
highlighted in (D) is homogeneous at short distances but very distinct at dis-
tances at the highlighted scale s = 6.9, indicating the major genetic turnover
at this scale and location. (G) Mean wavelet dissimilarity across the landscape
changes over time, highlighting the dynamic spatial population genetic patterns
across invasions. Loess smoothing curves are shown in (E-F).
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global allele frequency and thus global variance. To facilitate comparisons406

among loci for relative evidence of selection, we can normalize spatial patterns in407

allele frequency by total variation across locations, as is done when calculating408

FST .409

Here we divide the wavelet transforms of allele frequency by the standard410

deviation of global allele frequency variation for each locus i, sd(fi). This nor-411

malization is greatest when minor allele frequency is 0.5 for a biallelic locus, and412

yields a scaled wavelet transformed allele frequency: (Twavfi)(a, b, s)/sd(fi), for413

a given location and scale.414

We then calculate the variance across sampling locations of415

(Twavfi)(a, b, s)/sd(fi) and refer to this quantity as the ”scale-specific416

genetic variance.” This scaled-specific variance is akin to FST in being a417

measure of spatial variation in allele frequency normalized to total variation418

(which is determined by mean allele frequency). High scale-specific variance419

for a given locus indicates high variation at that scale relative to the total420

variation and mean allele frequency. We then used a �2 null distribution across421

all genomic loci to calculate parametric p-values (Cavalli-Sforza 1966; Lewontin422

and Krakauer 1973) and used the approach of Whitlock and Lotterhos (2015) to423

fit the degrees of freedom of the distribution of scale-specific genetic variances424

(see Supplemental Methods). Applying this approach to a range of simulated425

scenarios as well as an empirical dataset (described below), we see that the �2
426

distribution with a maximum likelihood fit to determine degrees of freedom427

provides a reasonably close fit to the distribution of scale-specific genetic428

variance among SNPs (Figures S10-S13 in File S1).429

3.1.2 Simulated local adaptation430

First, we present some specific individual simulations for illustration, and then431

a larger set with more variation in underlying parameters. We simulated a432

species with the same life history parameters as in simulations above, with433

the addition of spatially varying viability selection on a quantitative trait. We434

imposed two geometries of spatially varying selection, one a linear gradient435

and the other a square patch of di↵erent habitat selecting for a di↵erent trait436

value. As with the neutral simulations, simulations with selection began with437

organisms distributed across the landscape, with an ancestral trait value of438

zero. In these simulations, 1% of mutations influenced the quantitative trait439

with additive e↵ects and with e↵ect size normally distributed with a standard440

deviation of 5. For the linear gradient, the optimal trait value was 0.5 at one441

extreme and -0.5 at the other extreme, on a 25x25 square landscape. Selection442

was imposed using a Gaussian fitness function to proportionally reduce survival443

probability, with standard deviation �k. In this first simulation, �k = 0.5.444

Carrying capacity was roughly 5 individuals per square unit area, and simulated445

populations usually stabilized close to this density. Full details of simulation,446

including complete code, can be found in supplemental materials and on GitHub447

(https://github.com/jesserlasky/WaveletSpatialGenetic).448

In the first simulation along a linear gradient after 2,000 time steps there449
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were 2 selected loci with minor allele frequency (MAF) at least 0.1, with a450

genetic variance in the trait of 3.7. (the scale of mating and propagule dispersal451

were each � = 1.1) The two loci under stronger selection were clearly identified452

by the scale-specific genetic variance var((Twavfi)(a, b, s)/sd(fi)) at the larger453

spatial scales (Figure 4). When there is a linear selective gradient across the454

entire landscape, the largest spatial scale is the one most strongly di↵erentiating455

environments and the strongest scale-specific genetic variance was at the largest456

scale (Figure 4). However, power may not be greatest at these largest scales,457

because population structure also is greatest at these largest scales. Instead,458

power was greatest at intermediate scales, as seen by the lowest p-values being459

detected at these intermediate scales (Figure 4). At these scales there is greater460

gene flow but still some degree of changing selection that may maximize power461

to detect selection.462

We next simulated change in selection in a discrete habitat patch, which463

may more closely correspond to the setting where researchers would find useful464

a flexible approach to finding spatial patterns in allele frequency, especially465

if the patches of distinct environment are not known by researchers. In our466

simulation there was a large central patch, 10x10, that selected for distinct trait467

values (trait optimum = 0.5) compared to the outer parts of the landscape (trait468

optimum = -0.5). Selection was initially weakly stabilizing (�k = 3 around the469

optimum of zero for the first 500 years to accumulate diversity, and then the470

patch selective di↵erences were imposed with stronger selection, �k = 0.08. The471

scales of mating and propagule dispersal were each � = 2. Carrying capacity472

was roughly 50 individuals per square unit area.473

In this simulation we present results after 3000 time steps, where there was474

a single common QTL under selection, giving a genetic variance in trait of 0.42475

(Figure 5). We found several spurious large scale peaks in scale-specific genetic476

variance (Figure 5A), but when using the �2 test on these statistics we clearly477

identified the single QTL under selection, with lowest p-values for intermediate478

scales (Figure 5B).479

We calculated the scale-specific genetic variance across a denser spectrum480

of scales s for the causal SNP, to determine at what scale variance was great-481

est. We found the maximum scale-specific genetic variance for the causal SNP482

was at 5.02, approximately half the length of a patch edge (Figure 5C). For483

illustration, we also calculated FST (Goudet 2005; Weir and Cockerham 1984)484

for several naively discretized subpopulation scenarios for a simple illustration485

of how results are sensitive to discretization (Figure 5D-F). We also implement486

our test on these two simulated landscapes but with biased sampling and found487

our ability to detect causal loci was robust (Figure S14 in File S1).488

3.1.3 Evaluating the scale-specific genetic variance test489

As an initial assessment of the general appropriateness of the scale-specific ge-490

netic variance test we proposed above, we conducted additional simulations on491

two types of landscapes with varying life history parameters. These simulations492

were not meant to be an exhaustive evaluation of the performance of this new493
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Figure 4: Scale-specific genetic variance test applied to simulations
with a linear selective gradient. (top panels) Genome-wide variation in
scale-specific genetic variance, var((Twavfi)(a, b, s)/sd(fi)), for five di↵erent
scales s and upper-tail p-values for �2 test using fitted values of d.f. Each
point represents a SNP at a specific scale. Loci under selection are indicated
with vertical lines along with the absolute value of the derived allele’s e↵ect on
the trait and MAF. At bottom are shown maps of the two selected loci as well
as their spectra of scale-specific genetic variance. At upper right the mean scale-
specific genetic variance across all genomic loci is shown for each scale s. The
scale of mating and propagule dispersal were each � = 1.1. Gaussian viability
selection was imposed with �k = 0.5. Carrying capacity was approximately 5
individuals per square unit area.
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Figure 5: Simulations of local adaptation to a single discrete patch of
di↵erent habitat. (A) Genome-wide variation in scale-specific genetic variance
var((Twavfi)(a, b, s)/sd(fi)) and (B) �2 p-values for six di↵erent scales s, for
a discrete habitat di↵erence after 3000 simulated years. Each point in the left
panels represents a SNP, and wavelet statistics (A-B) at specific scales. The
selected SNP is indicated with a vertical line along with the absolute value of a
derived allele’s e↵ect on the trait and MAF. (C) A map of the landscape with
individuals’ genotypes at the causal SNP indicated with color, in addition to
the spectrum of scale-specific genetic variance at this SNP, showing a peak at
approximately half the patch width (vertical line at 5).(D-E) Implementation of
FST using arbitrary boundaries for populations. This approach can easily miss
causal loci (C,E) if the delineated population boundaries do not match habitat
boundaries. (A) At upper right the mean scale-specific genetic variance across
all loci is shown for each scale s. The scale of mating and propagule dispersal
were each � = 2. Gaussian viability selection was imposed with �k = 0.08.
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test; we leave a more extensive evaluation for future studies.494

Here, we again used the discrete habitat patch landscape and the linear495

gradient landscape but with a wider range of parameter variation. We tested496

a range of mating and dispersal (�) scales including 0.25, 0.5, 1, and 2, and a497

range of stabilizing selection (�k) values including 0.125, 0.25, 0.5, and 1. Three498

simulations were conducted for each combination of parameter settings and each499

ran for 10,000 years.500

Because PCAdapt is one of the few methods for identification of spatial501

pattern in allele frequency that does not require subpopulation discretization502

and in theory could detect patterns at multiple scales, we also implemented503

this method. We used the PCA of the scaled genotype matrix, thinned for504

LD but including causal SNPs, to extract the z-scores and p-values of each505

SNP with a cuto↵ of p = 0.05. We used a scree plot showing the percentage506

of variance explained in decreasing order to identify the optimal number of507

principal components following Cattell’s rule (Duforet-Frebourg et al. 2016).508

Calculating false and true positive rates for PCAdapt was straightforward,509

but for the scale specific genetic variance test there are several tests (one at510

each scale) for each SNP. To conservatively represent inference across these511

multiple tests, we considered SNPs a significant result if one of the tested scales512

was significant. Because the individual scale tests are slightly conservative,513

and continuous wavelet transforms are correlated across scales (and hence not514

completely independent tests), we expected the resulting false positive rates515

would not be unduly high.516

Overall the scale-specific genetic variance test showed good false positive517

rates. Across simulations, the proportion of SNPs with �2 upper-tail p < 0.05518

at one scale was usually close to but sometimes slightly more than 0.05 (Figure519

6). By contrast, under scenarios of low gene flow and strong stabilizing selection,520

nominal false positive rates were high for PCAdapt, often > 0.15.521

Power to detect SNPs (proportion of selected SNPs with p < 0.05) under522

selection was generally high (true positive rate near 1) but sometimes low, de-523

pending on the strength of selection (�k) and mating and dispersal scales (�)524

(Figure 6). When gene flow was high and selection was weak, power was low525

for both the scale-specific genetic variance test and PCAdapt. This also corre-526

sponds to the scenario when local adaptation is weakest (Kirkpatrick and N. H.527

Barton 1997). In addition to considering power simply based on p for each SNP,528

we also considered power using the top p-value rank among selected SNPs under529

each simulation, based on the reasoning that researchers may want to follow up530

on top ranked outlier SNPs first before any lower ranked SNPs. This approach531

showed similar results, with high power for both the scale-specific genetic vari-532

ance test and PCAdapt except when gene flow was high and selection weak. In533

general, the two methods showed comparable power across di↵erent scenarios534

(Figure 6), with some indication that the scale-specific genetic variance test had535

higher power under high gene flow and PCAdapt slightly higher power under536

lower gene flow. By plotting individual SNPs we can see that for the upper end537

of gene flow scenarios (� = 1 or 2), the scale-specific genetic variance test more538

consistently identified selected SNPs at the top compared to PCAdapt. For the539
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low gene flow scenarios, PCAdapt more consistently identified large e↵ect vari-540

ants, while the scale-specific genetic variance test more consistently identified541

the smaller e↵ect variants (see results for linear gradient in Figure S15 in File542

S1). Overall, the similarities in true and false positive rates between methods543

suggest that our wavelet approach is e↵ective compared to other related tools,544

while our test also o↵ers the ability to explicitly consider variation in spatial545

scale.546

3.2 Testing for spatial pattern in quantitative trait loci547

(QTL)548

When testing for spatially-varying selection on a quantitative trait, one approach549

is ask whether QTL identified from association or linkage mapping studies show550

greater allele frequency di↵erences among populations than expected (Berg and551

G. Coop 2014; Price et al. 2018). Here we implement such an approach to552

compare wavelet transformed allele frequencies for QTL L to a set of randomly553

selected loci of the same number and distribution.554

For this test we calculate the mean of scale-specific genetic variance for all555

QTL with MAF at least 0.05 among sampled individuals. We then permute556

the identity of causal QTL across the genome and recalculate the mean scale-557

specific genetic variance, and repeat this process 1000 times to generate a null558

distribution of mean scale-specific genetic variance of QTL for each scale s.559

We illustrate this test here briefly using a simulation of adaptation to a560

square patch of habitat in the middle of a landscape, with the two gene flow561

parameters � = 0.5, the strength of selection �K = 0.5, carrying capacity562

⇠ 5 individuals per square unit area. After 1000 generations we sampled 300563

individuals, from which there were 13 QTL for the trait under selection with564

MAF at least 0.05. We then calculated the mean scale-specific genetic variance565

for these QTL across scales s and compared to the null permutations of randomly566

selected 13 SNPs from the genome.567

We found significantly higher mean scale-specific genetic variance for the568

QTL than the null expectation at all 6 scales tested. Although the scale-specific569

genetic variance was greatest at the largest scales for the QTL, these scales did570

not show as great a distinction when comparing to the null. The greatest mean571

wavelet variance of QTL relative to null came at the intermediate scales of 3-5,572

which was approximately 1/3-1/2 the width of the habitat patch (Figure S16 in573

File S1).574

3.3 Application to an empirical system575

3.3.1 Genome-wide wavelet dissimilarity576

We applied our approach to an empirical dataset of diverse, broadly distributed577

genotypes with whole genome resequencing data: 908 genotypes from 680 nat-578

ural populations of the model plant, Arabidopsis thaliana (Brassicaceae). We579
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Figure 6: Comparing the scale-specific genetic variance test with
PCAdapt in simulations of adaptation to single discrete patch of dif-
ferent habitat. (A) True positive rates (nominal p < 0.05) for each combi-
nation of simulation parameters, the scales of mating and dispersal � and the
standard deviation of the Gaussian stabilizing selection function �k. (B) An
alternate view of statistical power based on the median rank of the top selected
SNP among all SNPs. (C) False positive rates (nominal p < 0.05). (D) Com-
paring power between the two statistical approaches for the di↵erent simulation
runs. Density of points is shown in the blue scale so as to indicate where many
simulations had the same result. The line indiciates a 1:1 relationship. (E-F)
Individual selected SNPs in simulations, showing their nominal p values and
ranks among all SNPs, colored based on � in the simulation. The x-axis rep-
resents the proportion of total phenotypic variation among sampled individuals
that was explained by the given SNP (R2 from a linear model).
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used a published Arabidopsis dataset (Alonso-Blanco et al. 2016), only includ-580

ing Eurasian populations and excluding highly distinct ”relicts” and also likely581

contaminant accessions (Pisupati et al. 2017). For locations with more than one582

accession genotyped we calculated allele frequency. We used a total of 129536583

SNPs filtered for minor allele frequency (MAF> 0.05) and LD (Zheng et al.584

2012).585

We first calculated the genome-wide wavelet dissimilarity, Dwav
a,b (s), across a586

series of increasing scales s at even intervals in log distance units from ⇠ 50 m587

to approximately half the distance separating the farthest samples, ⇠ 3000 km.588

We observed increasing mean genome-wide wavelet dissimilarity at larger589

scales (Figure 7), a pattern indicative of isolation by distance, on average, across590

the landscape. Arabidopsis showed significantly low dissimilarity at scales less591

than ⇠ 5 km, likely due to the homogenizing e↵ect of gene flow. However, we592

found significantly high dissimilarity at scales greater than ⇠ 7 km. This scale593

of significantly high dissimilarity may be a relatively short distance, consid-594

ering that Arabidopsis is largely self pollinating and lacks clear seed dispersal595

mechanisms (though seeds of some genotypes form mucus in water that increases596

buoyancy) (Saez-Aguayo et al. 2014). At scales greater than ⇠ 120 km we found597

an increase in the slope relating scale s and dissimilarity, perhaps signifying a598

scale at which local adaptation begins to emerge.599

The locations of scale-specific dissimilarity among Arabidopsis populations600

revealed several interesting patterns. Even by the ⇠ 30 km scale, there were601

three notable regions of significantly high dissimilarity: northern Spain and602

extreme southern and northern Sweden (Figure 7). The high dissimilarity at this603

scale in northern Spain corresponds to the most mountainous regions of Iberia,604

suggesting that limitations to gene flow across this rugged landscape have led605

to especially strong isolation among populations at short distances. In northern606

Sweden, Long et al. (2013) previously found a particularly steep increase in607

isolation-by-distance. Alonso-Blanco et al. (2016) found that genetic distance608

was greatest among accessions from Southern Sweden at scales from ⇠ 20� 250609

compared to regions farther south. At larger, among-region scales, dissimilarity610

was significantly high across the range, with Iberia and northern Sweden again611

being most dissimilar at ⇠ 234 km and surpassed by central Asia at ⇠ 1834 km612

as being most dissimilar. Iberia and northern Sweden contain many accessions613

distantly related to other accessions, likely due to isolation during glaciation614

and subsequent demographic histories (Alonso-Blanco et al. 2016). This scale615

in Asia separates populations in Siberia from those further south in the Tian616

Shan and Himalayas, indicating substantial divergence potentially due to limited617

gene flow across the heterogeneous landscape. By contrast, populations in the618

UK and the Balkan peninsula had low dissimilarity across a range of scales,619

possibly due to reduced diversity and a more recent history of spread in these620

regions.621
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Figure 7: Genome-wide wavelet dissimilarity, Dwav
a,b (s), for Arabidopsis

genotypes. (A) The global mean dissimilarity across scales compared to the
null expectation (gray ribbon) and (B) the dissimilarity across scales centered
on each sampled genotype, with several regions highlighted (vertical lines indi-
cate scales shown in panels C-F). (C-F) Selected scales highlight the changes
in dissimilarity across locations, with each circle indicating a genotyped sam-
ple/population. Red indicates significantly greater wavelet dissimilarity than
expected, blue significantly less than expected. For the map panels, the in-
tensity of color shading indicates the relative variation (for a given scale) in
Dwav

a,b (s) among significant locations.
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3.3.2 Identifying putative locally-adapted loci622

For this analysis, we used the same genotypes as in the prior section but not623

filtered for LD, leaving 1,642,040 SNPs with MAF> 0.1 (Alonso-Blanco et al.624

2016).625

The scale-specific genetic variance test identified putative locally adapted626

loci (Figure S17 in File S1). The distribution of scale-specific genetic variance627

among SNPs was reasonably matched to the theoretical �2 distribution (Figure628

S13 in File S1). Among notable loci, at the ⇠ 59 km scale, the #2 QTl and #3629

SNP is in the coding region of METACASPASE 4 (MC4), a gene that controls630

biotic and abiotic stress-induced programmed cell death (Hander et al. 2019;631

Shen, Liu, and Li 2019). To speculate, if MC4 were involved in coevolution632

with microbial pathogens we might expect rapid allele frequency dynamics and633

thus a pattern of high variation among even nearby populations.634

The #1 SNP for the ⇠ 282 km scale was in the coding sequence of the DOG1635

gene (Figure 8, Figure S17 in File S1). This SNP, Chr. 5, 18,590,741 was also636

strongly associated with flowering time (see next section) and germination and637

tags known functional polymorphisms at this gene that are likely locally adap-638

tive (Mart́ınez-Berdeja et al. 2020). The spatial pattern of variation at this639

locus (Figure 8) is complicated, highlighting the benefit of the flexible wavelet640

approach. By contrast, imposing a grid on this landscape, or using national641

political boundaries to calculate FST could easily miss the signal as did Horton642

et al. (2012). The climate-allele frequency associations for DOG1 are also com-643

plicated and non-monotonic (gamba˙genomics˙2023 ; Mart́ınez-Berdeja et al.644

2020), making it challenging for genotype-environment association approaches645

(Jesse R Lasky, Emily B Josephs, and Morris 2023).646

At the⇠ 1359 km scale, the #1 SNP (and also the lowest p-value SNP among647

all scales, Figure 8, Figure S17 in File S1) was on chromosome 5 at 26,247,515 bp,648

555 bp upstream from AT5G65660, a hydroxyproline-rich glycoprotein family649

protein. These are cell wall glycoproteins with important roles in development650

and growth (Johnson et al. 2017) some of which have a role in abiotic stress651

response (Tseng et al. 2013).652

3.3.3 Testing for local adaptation in quantitative trait loci (QTL)653

We tested for non-random scale-specific genetic variance of QTL for Arabidopsis654

flowering time, a trait that is likely involved in local adaptation (Ågren et al.655

2017). We used previously published data on flowering time: days to flower at656

10ºC measured on 1003 genotypes and days to flower at 16ºC measured on 970657

resequenced genotypes (Alonso-Blanco et al. 2016). We then performed mixed-658

model genome wide association studies (GWAS) in GEMMA (v 0.98.3) (Zhou659

and Stephens 2012) with 2,048,993 M SNPs filtered for minor allele frequency660

(MAF> 0.05), while controlling for genome-wide similarity among ecotypes.661

We found that top flowering time GWAS SNPs showed significantly elevated662

scale-specific genetic variance at several intermediate spatial scales tested. For663

flowering time at both 10º and 16ºC, scale-specific genetic variance was signifi-664
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Figure 8: Allelic variation (colors) for SNPs that were top outliers for
scale-specific genetic variance test at di↵erent scales. On maps at left,
the scale for which a SNP was an outlier is indicated by a bar above each map.
The right panels show the spatial spectra for each SNP, i.e. the scale-specific
genetic variance across a range of scales. Dashed lines indicate the scale for
which a SNP was an outlier.
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cantly elevated for the top 1,000 SNPs at the 282, 619, and 1359 km scales, but665

not always at the largest or smallest scales (Figure 9). In particular the scale-666

specific genetic variances were greatest for the ⇠ 282 km scale where the mean667

scale specific genetic variance for 16ºC QTL was 15.2 standard deviations above668

the null mean, and the ⇠ 619 km scale, where the mean scale specific genetic669

variance for 10ºC QTL was 13.5 standard deviations above the null mean. For670

QTL from both temperature experiments, results were nearly equivalent if we671

instead used the top 100 SNPs.672

4 Discussion673

Geneticists have long developed theory for spatial patterns in allele frequency674

(Haldane 1948; Malécot 1948; Wright 1943). Empiricist have sought to use these675

patterns make inference about underlying processes of demography, gene flow,676

and selection (Lewontin and Krakauer 1973; McRae et al. 2008; Rousset 2000).677

While statistical approaches have been developed to characterize geographic678

patterns, few are flexible enough to incorporate patterns at a range of scales that679

are also localized in space. Because wavelet transforms have these properties,680

we think they may be useful tools for geneticists. Here we demonstrated several681

applications of wavelet transforms to capture patterns in whole genome variation682

and at particular loci, under a range of neutral and non-neutral scenarios.683

Some important existing approaches are based on discretization of spatially-684

distributed samples into spatial bins, i.e. putative populations (Bishop, Cham-685

bers, and I. J. Wang 2023; Petkova, Novembre, and Stephens 2016; Weir and686

Cockerham 1984). However, without prior knowledge of selective gradients, pat-687

terns of gene flow, or relevant barriers, it is often unclear how to delineate these688

populations. For example, we can see how the specific discretization can hinder689

our ability to find locally-adapted loci in our simulations (Figure 5) and in em-690

pirical studies of Arabidopsis in the case of the phenology gene DOG1 that was691

missed in previous FST scans (Alonso-Blanco et al. 2016; Horton et al. 2012).692

Our goal in this paper was to provide a new perspective on spatial popula-693

tion genetics using the population-agnostic, and spatially smooth approach of694

wavelet transforms. We showed how these transforms characterize scale-specific695

and localized population structure across landscapes (Figures 2, 3, 7). We also696

showed how wavelet transforms can capture scale-specific evidence of selection697

on individual genetic loci (Figures 4, 5, 6, 8) and on groups of quantitative trait698

loci (Figure 9). Our simulations and empirical examples showed substantial699

heterogeneity in the scale and stationarity of spatial patterns. For example,700

the wavelet genetic dissimilarity allowed us to identify regions near a front of701

range expansion with steeper isolation by distance at particular scales due to702

drift (Figure 3). Additionally, we identified loci underlying local adaptation703

and showed an example where the evidence for this adaptation was specific to704

intermediate spatial scales (Figure 5). While existing approaches to character-705

izing population structure or local adaptation have some ability to characterize706

scale specific patterns, e.g. those based on ordinations of geography (Wagner,707
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Figure 9: Testing for selection on Arabidopsis flowering time QTL. We
compared scale-specific genetic variance, var((Twavfi)(a, b, s)/sd(fi)), of QTL
with random SNPs, for five di↵erent scales s, for flowering time measured at
10ºC and 16ºC. The first two columns show the observed mean of the top 1,000
flowering time SNPs with a vertical line and a z-score. The histograms show
null distributions of scale-specific genetic variance based on permutations of an
equal number of markers with an equal distribution as the flowering time QTL.
At right the scale-specific genetic variance is shown for random SNPs and for
the flowering time QTL (gray lines), across scales, with the mean indicated by
a black line.

27

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyae082/7676102 by Pennsylvania State U

niv. Library - Penn State user on 21 M
ay 2024



Chávez-Pesqueira, and Forester 2017) or SNPs (Emily B. Josephs et al. 2019),708

and some can capture localized patterns (e.g Petkova, Novembre, and Stephens709

2016), there are few examples of approaches that merge both abilities (Wagner,710

Chávez-Pesqueira, and Forester 2017).711

Like many methods in population genetics that rely on inference from ob-712

servational data, we view our approaches as exploratory and hypothesis gen-713

erating. Heterogeneous patterns of genome-wide wavelet dissimilarity suggest714

demographic hypotheses, some of which can be tested with detailed ecological715

and genetic study (e.g. Keeley et al. 2017). For genome-scans for loci involved716

in local adaptation, the p-values resulting from multiple tested scales are compa-717

rable and so we recommend starting with the loci having the lowest p-value, and718

using these to develop hypotheses for functional follow up experiments (Jesse R719

Lasky, Emily B Josephs, and Morris 2023).720

The test for spatial pattern in individual loci we developed owes greatly to721

previous work from Lewontin and Krakauer (1973) who initially developed �2
722

tests applied to the distribution of FST values, and fromWhitlock and Lotterhos723

(2015)’s approach of inferring the degrees of freedom of the �2 distribution724

using maximum likelihood and FST across loci. The �2 distribution underlies725

a number of related genetic applied across loci (François et al. 2016). However,726

we note that this test may be slightly conservative in some situations (Figure 6).727

Nevertheless, we believe there were important signs in our work that this �2-728

based scale-specific genetic variance test was valuable. In particular, we found729

in our simulation of adaptation to a habitat patch that the scale-specific genetic730

variance was greatest at large spatial scales but at neutral sites, which obscured731

spatial pattern at the causal locus (Figure 5). When applying the �2 test, we732

were able to clearly map the causal locus while spurious loci with high scale-733

specific genetic variance fell away because spatial patterns at those loci still fit734

within the null distribution.735

Relatedly, we found in other simulations and our empirical examples that the736

strongest evidence for local adaptation was often not at the largest spatial scales737

(Figure 9), even when the selective gradient was linear across the landscape (i.e.738

the largest scale, Figure 4). This enhanced power at scales sometimes smaller739

than the true selective gradients may be due to the limited power to resolve740

true adaptive clines at large scales from the genome-wide signal of isolation by741

distance at these scales. At intermediate scales, there may be a better balance742

of su�cient environmental variation to generate spatial pattern versus higher743

relatedness between locations due to gene flow.744

We note that there remain several limitations to our approach proposed745

here. First, the ability of wavelet transforms to capture patterns depends on746

the correspondence between the wavelet form (shape) and the form of the em-747

pirical patterns we seek to enhance, and there may be better functional forms to748

filter spatial patterns in allele frequency. Generally speaking, a more compact749

smoothing kernel with minimum weight in the tails will be better at reveal-750

ing abrupt spatial transitions, but at the necessary cost of less precise deter-751

mination of scale (Heisenberg 1927). Smoothing kernels such as the tricube752
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) have been shown to optimize certain trade-o↵s in this space753

and could be used to construct a di↵erence-of-kernels wavelet. However, the754

overall influence of kernel shape tends to be much less than the influence of ker-755

nel bandwidth in our experience. Second, we have not yet implemented localized756

tests for selection (i.e. specific to certain locations) as we did with genome-wide757

dissimilarity. A challenge applying this test at individual loci is that there is a758

very large number of resulting tests from combinations of loci, locations, and759

scales. Therefore we have not fully exploited the localized information we derive760

from the wavelet transforms.761

There are number of interesting future directions for research on wavelet762

characterization of spatial pattern in evolutionary biology. First, we could apply763

the wavelet transforms to genetic variation in quantitative traits measured in764

common gardens, to develop tests for selection on traits akin to the QST - FST765

test (Emily B. Josephs et al. 2019; Whitlock and Guillaume 2009). Second, we766

could follow the example of Al-Asadi et al. (2019) and apply our measures of767

genetic dissimilarity to haplotypes of di↵erent size to estimate relative variation768

in the age of population structure. Third, we should test the performance of769

our tools under a wider range of demographic and selective scenarios to get a770

more nuanced picture of their strengths and weaknesses. Fourth, null models for771

wavelet dissimilarity could be constructed using knowledge of gene flow processes772

(instead of random permutation) to identify locations and scales with specific773

deviations from null patterns of gene flow.774

4.1 Conclusion775

Population genetics (like most fields) has a long history of arbitrary discretiza-776

tion for the purposes of mathematical, computational, and conceptual conve-777

nience. However, the real world often exists without clear boundaries between778

populations and where processes act simultaneously at multiple scales. We be-779

lieve that wavelet transforms are one of a range of tools that can move population780

genetics into a richer but still useful characterization of the natural world.781

4.2 Data availability782

Code used to generate the simulations and analyses shown here are freely avail-783

able at https://github.com/jesserlasky/WaveletSpatialGenetic/.784

5 Acknowledgments785

We thank Emily Josephs and Benjamin Peter and two anonymous reviewers for786

helpful comments. We thank Joanna Rifkin and JGI for help finding bugs in787

code.788

29

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyae082/7676102 by Pennsylvania State U

niv. Library - Penn State user on 21 M
ay 2024



6 Funding789

This work was supported by NIH award R35GM138300 to JRL.790

References791
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Heisenberg, W. (Mar. 1927). “Über den anschaulichen Inhalt der quanten-946

theoretischen Kinematik und Mechanik”. de. In: Zeitschrift für Physik947

43.3. Company: Springer Distributor: Springer Institution: Springer Label:948

Springer Number: 3 Publisher: Springer-Verlag, pp. 172–198. doi: 10.1007/949

BF01397280. url: https : / / link . springer . com / article / 10 . 1007 /950

BF01397280 (visited on 03/21/2022).951

Horton, Matthew W et al. (2012). “Genome-wide patterns of genetic variation952

in worldwide Arabidopsis thaliana accessions from the RegMap panel”. In:953

Nat Genet 44, pp. 212–216. issn: 1546-1718. doi: 10.1038/ng.1042. url:954

http://dx.doi.org/10.1038/ng.1042.955

Johnson, Kim L. et al. (June 2017). “Insights into the Evolution of956

Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes”. In:957

Plant Physiology 174.2, pp. 904–921. issn: 0032-0889. doi: 10.1104/pp.958

17.00295. url: https://doi.org/10.1104/pp.17.00295 (visited on959

08/24/2023).960

Josephs, Emily B. et al. (Mar. 2019). “Detecting Adaptive Di↵erentiation in961

Structured Populations with Genomic Data and Common Gardens”. en. In:962

Genetics 211.3. Publisher: Genetics Section: Investigations, pp. 989–1004.963

issn: 0016-6731, 1943-2631. doi: 10.1534/genetics.118.301786. url:964

https://www.genetics.org/content/211/3/989 (visited on 11/18/2020).965

33

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyae082/7676102 by Pennsylvania State U

niv. Library - Penn State user on 21 M
ay 2024



Kawecki, Tadeusz J. and Dieter Ebert (2004). “Conceptual issues in local adap-966

tation”. In: Ecology Letters 7.12, pp. 1225–1241. issn: 1461-0248. doi: 10.967

1111/j.1461-0248.2004.00684.x. url: http://dx.doi.org/10.1111/j.968

1461-0248.2004.00684.x.969

Keeley, Annika T. H. et al. (May 2017). “Habitat suitability is a poor proxy for970

landscape connectivity during dispersal and mating movements”. In: Land-971

scape and Urban Planning 161, pp. 90–102. issn: 0169-2046. doi: 10.1016/972

j.landurbplan.2017.01.007. url: https://www.sciencedirect.com/973

science/article/pii/S0169204617300154 (visited on 02/01/2024).974

Keitt, Timothy H. (2007). “On the quantification of local variation in biodiver-975

sity scaling using wavelets”. In: Scaling Biodiversity. Publisher: Cambridge976

University Press, pp. 168–80.977

Kimura, Motoo and James F. Crow (1963). “The Measure-978

ment of E↵ective Population Number”. en. In: Evolution 17.3.979

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1558-980

5646.1963.tb03281.x, pp. 279–288. issn: 1558-5646. doi: 10.1111/j.1558-981

5646.1963.tb03281.x. url: https://onlinelibrary.wiley.com/doi/982

abs/10.1111/j.1558-5646.1963.tb03281.x (visited on 01/20/2024).983

Kimura, Motoo and George H. Weiss (Apr. 1964). “The Stepping Stone Model984

of Population Structure and the Decrease of Genetic Correlation with Dis-985

tance”. In: Genetics 49.4, pp. 561–576. issn: 0016-6731. url: https://www.986

ncbi.nlm.nih.gov/pmc/articles/PMC1210594/ (visited on 01/22/2024).987

Kirkpatrick, Mark and N. H. Barton (July 1997). “Evolution of a Species’988

Range”. In: The American Naturalist 150.1. ArticleType: research-article989

/ Full publication date: July 1997 / Copyright © 1997 The University of990

Chicago Press, pp. 1–23. issn: 00030147. url: http://www.jstor.org/991

stable/10.1086/286054.992

Lasky, Jesse R, Emily B Josephs, and Geo↵rey P Morris (Jan. 2023). “Geno-993

type–environment associations to reveal the molecular basis of environmental994

adaptation”. In: The Plant Cell 35.1, pp. 125–138. issn: 1040-4651. doi: 10.995

1093/plcell/koac267. url: https://doi.org/10.1093/plcell/koac267996

(visited on 02/26/2023).997

Lasky, Jesse R., DAVID L. Des Marais, et al. (2012). “Characterizing genomic998

variation of Arabidopsis thaliana: the roles of geography and climate”. In:999

Molecular Ecology 21.22, pp. 5512–5529. issn: 1365-294X. doi: 10.1111/j.1000

1365-294X.2012.05709.x. url: http://dx.doi.org/10.1111/j.1365-1001

294X.2012.05709.x.1002

Lasky, Jesse R. and Timothy H. Keitt (Nov. 2013). “Reserve Size and Fragmen-1003

tation Alter Community Assembly, Diversity, and Dynamics.” In: The Amer-1004

ican Naturalist 182.5, E142–E160. issn: 0003-0147. doi: 10.1086/673205.1005

url: http://dx.doi.org/10.1086/673205 (visited on 02/22/2017).1006

Le Corre, Valérie et al. (Apr. 1997). “Colonization with long-distance seed1007

dispersal and genetic structure of maternally inherited genes in forest1008

trees: a simulation study”. en. In: Genetics Research 69.2. Publisher:1009

Cambridge University Press, pp. 117–125. issn: 1469-5073, 0016-6723.1010

doi: 10 . 1017 / S0016672397002668. url: https : / / www . cambridge .1011

34

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyae082/7676102 by Pennsylvania State U

niv. Library - Penn State user on 21 M
ay 2024



org / core / journals / genetics - research / article / colonization -1012

with- longdistance- seed- dispersal- and- genetic- structure- of-1013

maternally-inherited-genes-in-forest-trees-a-simulation-study/1014

FFEDD8A5B195F1C01C99261FE49B6432 (visited on 11/28/2022).1015

Lewontin, R. C. and J. Krakauer (May 1973). “Distribution of gene frequency1016

as a test of the theory of the selective neutrality of polymorphisms”. eng. In:1017

Genetics 74.1, pp. 175–195. issn: 0016-6731.1018

— (June 1975). “Testing the Heterogeneity of F Values”. In: Genetics 80.2,1019

pp. 397–398. issn: 0016-6731. url: https://www.ncbi.nlm.nih.gov/pmc/1020

articles/PMC1213337/ (visited on 02/10/2022).1021

Loiselle, Bette A. et al. (1995). “Spatial Genetic Structure of a Tropical Un-1022

derstory Shrub, Psychotria o�cinalis (Rubiaceae)”. In: American Journal1023

of Botany 82.11. Publisher: Botanical Society of America, pp. 1420–1425.1024

issn: 0002-9122. doi: 10.2307/2445869. url: https://www.jstor.org/1025

stable/2445869 (visited on 01/21/2024).1026

Long, Quan et al. (Aug. 2013). “Massive genomic variation and strong selec-1027

tion in Arabidopsis thaliana lines from Sweden”. en. In: Nature Genetics1028

45.8. Bandiera abtest: a Cg type: Nature Research Journals Number: 8 Pri-1029

mary atype: Research Publisher: Nature Publishing Group Subject term:1030

Population genetics Subject term id: population-genetics, pp. 884–890. issn:1031

1546-1718. doi: 10 . 1038 / ng . 2678. url: http : / / www - nature - com /1032

articles/ng.2678 (visited on 01/16/2022).1033

Machado, Heather E et al. (June 2021). “Broad geographic sampling reveals1034

the shared basis and environmental correlates of seasonal adaptation in1035

Drosophila”. In: eLife 10. Ed. by Magnus Nordborg, Patricia J Wittkopp,1036

and Magnus Nordborg. Publisher: eLife Sciences Publications, Ltd, e67577.1037

issn: 2050-084X. doi: 10.7554/eLife.67577. url: https://doi.org/10.1038

7554/eLife.67577 (visited on 01/24/2022).1039
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